

Modernizing Desktop
Linux Development
Christian Hergert
Principle Software Engineer

TM

 📧 chergert@gnome.org
 🐦@hergertme

Desktop Linux Development
• Mostly in C/C++
• Build systems from last millennium that are a mess
• Every desktop deployment is bespoke and developers

throw their hands up and close -EWORKSFORME
• Apps are shipped on OS release cycle, lucky if we get

security updates at all after initial release
• Debugging in the wild is nearly impossible
• We value independence which can cause fragmentation

TM

Why Modernize?
• Potential contributors skip past us after it’s too difficult to

setup workstation for development
• We need new lifeblood to keep desktop Linux going and

new contributors have more expectations
• Our current level of fragmentation makes it hard to write

polished software and results in more bugs
• Training contributors is complex and time consuming
• Be more efficient with our time so each of us can do more

TM

Can we…
• Maintain independence while reducing fragmentation?
• Separate applications from the OS without losing long-

term stability?
• Empower software vendors to ship better software to more

users in less time?
• Be a playground for ambitious ideas without sacrificing

stability of the platform?

TM

Why is it hard to contribute?
• Lacking or missing documentation
• Dependency incompatibility for application vs platform or

even between two separate applications
• Wide-scale app distribution is hard and costly, so most

don’t and certainly not across every distro
• Workstation setup is a really high bar for newcomers
• Fragmentation leaves contributors confused about which

and what platforms to support and to what degree

TM

Why is it hard to contribute?
• Shifting and different priorities between projects
• Systems complexity and overlapping concerns between

unrelated projects
• Lack of training materials
• Too many technologies to learn at once

TM

What makes setup difficult?
• New contributors often ask what Linux distribution to use

so that they match others setup, out of frustration
• Dependencies for development outpace stable OS
• Bespoke OS deployments result in many WFM bugs
• Getting working stack traces often puts people at odds

with distribution compiler flags

TM

Has the ecosystem changed?
• Continuous integration
• Valgrind/ASan/TSan/UBSan more ubiquitous
• Git, Gitlab, Github have by-and-large won
• Containers are everywhere
• Programming language diversity
• Device and interface diversity (laptop, desktop, mobile, IoT)
• Cross-toolchains generally work now
• GL/EGL/Vulkan can now be relied on

TM

What changes can we expect?
• Immutable base OS with reliable OS updates (ChromeOS

and Silverblue already here, albeit different designs)
• Containers for applications becomes almost necessary
• Stricter sandboxes for user privacy and security
• Even more kinds of computing devices (possibly at the

expense of generalized computing devices)
• New models of privileged access (less sudo, more implied

access via workflow)
• More language diversity as OS vendors are less involved

TM

So what is this Builder thing?
• Great app with a terrible name (my fault, sorry)
• Likely the first container-native IDE
• Memory conscientious (written in C, read-only mmap()

search indexes, fancy data-structures when appropriate)
• Every API of consequence is asynchronous by design
• Fast b-tree and rope-based text editor with overview maps

and buttery smooth scrolling, even on HiDPI systems
• Integrated UI designer based on Glade

TM

So what is this Builder thing?
• Integration points can be extended with plugins written in

C/C++, Python, or Vala. Rust support is not far away.
• Unit test integration for build systems
• Debugger integration (currently just gdb, but language

specific debugger plugins are welcomed)
• Profiler based on the perf-based Sysprof profiler
• Completion, diagnostics, fix-its
• Terminal access to host, build environment, or runtime

TM

So what is this Builder thing?
• 10 build systems supported and counting
• Easy installation of Builder via Flatpak in two clicks
• Manage developer SDKs to simplify system setup – which

can now be done in minutes rather than evenings
• Code-indexers with lightening fast fuzzy-search
• Non-opinionated on developer’s language choice
• Multi-monitor support
• Semantic indentation, code-formatting, highlighting

TM

So what is this Builder thing?
• Code execution abstractions to allow for cross-architecture

execution (qemu-user-static with flatpak supported
natively)

• Device abstractions to quickly setup cross-compilation
• Deployment APIs for plugins to support execution on non-

local systems

TM

Improving Builder
Improves the Platform

TM

Is contributing easier?
• Preserves independence: bring your own distribution,

thanks to Flatpak
• Easy install from gnome-software, flathub.org, or an app

market near you
• Getting a shared toolchain is automatically handled for you

and your newcomers
• One-click to clone common GNOME apps. One more to

build, run or debug
• Reducing time to first patch boosts contributor funnel

TM

What challenges come with a
container native IDE?

TM

Challenges - PTY
• Sharing pseudo-terminals across pid namespaces is tricky
• FD passing PTY outside of direct fork()/exec() requires extra

setup for controlling PTY (TIOCSCTTY ioctl)
• Some shells like ZSH want to coordinate between

instances and that breaks with multiple pty-namespaces
• Guessing the users preferred shell requires checking

passwd/getent on the host
• Users expect a shell for their host system, but also for the

build container, runtime container, etc

TM

Challenges – FD Passing
• FD passing is a convenient way to share information

between processes, particularly when shared memory is
not an option

• If you cross pid/mount/network namespaces, you can exec()
processes and still have access to stdin/out/err

• IPC with container for high-bandwidth communication
• Podman recently added FD passing support for us

TM

Challenges – Path Translation
• Different tooling may need to access files outside of

container (symbols, debugger sources, etc)
• Paths inside the container and outside the container may

differ (or even clash with host system)
• Some additional work could be required to translate based

on path such as /usr vs /app in Flatpak
• Tooling that runs in the IDE may use different paths than

tooling that runs inside build container

TM

Challenges – Debugging
• Currently we use gdb, but more backends will be supported

in the future. That requires some abstraction from the
start.

• Passing FD for PTY to be used by inferior
• Control gdb using primary PTY (using gdbwire+MI2)
• But where does gdb binary come from
• Where do application symbols come from, and does the

DWARF data (including absolute/relative paths match?)
• How about __FILE__ and other paths to sources?

TM

Challenges – Profiling
• Currently we use Sysprof, another project of mine based on

Linux-kernel perf
• Symbol access has similar problems to gdb, we have to

resolve that based on project information
• Resolving functions based on instruction-pointer+ELF still

requires further resolution when symbols in external file
• Containers usually have PTRACE/perf disabled, so we need

coordiantion from the host (sysprofd in our case)
• Someday, we want to provide sysprofd from Builder flatpak

TM

Challenges – Execution
• User namespaces should be usable, but lots of CVE means

that it’s often disabled by default on major distributions
• Suid helpers can help work around this (bubblewrap) but

not after userns capability is dropped
• Flatpak session helper allows Builder to execute programs

available on the host (bash, getent, flatpak, etc)
• Can chain features to also get podman-exec, jhbuild-run,

and whatever is next

TM

Language Servers

TM

Language Servers – The Good
• Convenient way to share code between IDEs and Editors
• Allows tooling to run in container matching the build

environment which can simplify server greatly at cost of
complicating build environment

• When combined with Flatpak SDK extensions, we can get
automated setup of complex languages out-of-the-box.
Relying on user-setup would basically guarantee nobody
will use them.

• The protocol itself is reasonably good

TM

Language Servers – The Bad
• JSON is laughably inefficient when dealing with large data

sets like clang completion results, especially when client-
side filtering is required

• JSON parsers can result in memory fragmentation unless
you are very careful, resulting in lots of small strings on the
heap or more fragmentation w/ unpredictable lifetimes

• Builder’s internal language servers optionally use GVariant
for zero-parse structures and good memory slice reuse.
Also can reference strings inline from the message

• Many of the language servers out there are brittle at best

TM

SDKs

TM

SDK Management
• Flatpak and OSTree based
• SDK extensions allow for extra build components that are

useful, but specialized, thereby keeping base SDK smaller
• Containerized (using flatpak/bubblewrap)
• Toolchains, libraries, debuggers, build systems, all shared

by your development team, completely eliminating
complex system setup

• Incremental SDK updates using OSTree diffs/static-deltas
• GNOME Software can keep SDKs up-to-date too

TM

OSTree
• Like git for binaries
• Incremental updates by diff of 2 versions
• “static deltas” provide optimized, pre-compiled diff

between two versions for very fast downloads. Typically
generated for N-1, N-2 releases

• Content addressed for automatic deduplication
• Hard-link farm design means low-overhead and works on

any POSIX compliant file-system (but better w/ reflink)
• File-system powering Fedora Silverblue, Atomic

TM

Flatpak
• Sandboxed (using bubblewrap, now shared with other tooling)
• Using lots of the new container technology such as pid, mount,

network, and user namespaces
• OSTree based to gain all the benefits designed for large scale

container deployments
• Runtime vs App split keeps download overhead low, helps

share and reduce CVE/Security burden beyond distros
• Portals for safe escalation of access from a sandbox
• Usable on top of read-only base OS, live-cd, etc

TM

Flatpak SDK extensions
• SDKs are really just runtimes before the includes, libraries,

and build toolchains are removed
• Most if not all the objects shared with runtime will be de-

duplicated automatically by OSTree
• SDK extensions allow specialized tooling to be integrated

into the mount namespace (golang, java, mono, etc)
• Great place for language servers so that you don’t rely on

application manifest or host system to provide them

TM

Flatpak SDK extensions
• Builder automatically discovers and installs them from

configured flatpak repositories
• Reproducible builds are closer due to shared toolchains and

other bits that can differ between Linux-based OS

TM

Plugins

TM

Builder Extension Points
• Application (singletons)

• Workbench (per project)

• Workspace (per window)

• Editor Page (per buffer view)

• Runtimes (container support)

• Pipeline (hook into build phases)

• Build Configurations

• Run Handlers (how/where to exec)

• Completion, Diagnostics, Fix-its

TM

• Symbol Resolvers

• Debuggers

• Buffer Addin (per-buffer)

• Search Providers

• Project Tree

• Devices

• Unit Test

• Build Targets

• Preferences

• Frame (per page stack)

• Session save/restore

• Commands

• Refactoring (renaming)

• Toolchains (sysroots)

• Hover tooltips

• Project Templates

• Semantic highlighters,
formatters

• And much more…

Writing Builder plugins
• You can write in C/C++, Vala, or Python (with Rust around

the corner)
• 2 files necessary
• my_plugin.plugin — Plugin Metadata
• my_plugin.py — Plugin implementation

• Subclass and implement plugin interfaces by overriding the
virtual functions

TM

Writing Builder plugins

TM

from gi.repository import GObject, Ide

class MyBufferAddin(GObject.Object, Ide.BufferAddin):
 def do_file_loaded(self, buffer, file):
 print(“Loaded file”, file.get_uri())
 def do_save_file(self, buffer, file):
 print(“Saving file”, file.get_uri())
 # …

Demo

TM

What features can we expect?
• More language servers (likely provided via flatpak)
• Simulators API for plugins (maybe for Librem5, GNOME

developer builds, etc)
• More container support (podman coming soon)
• Maintainer tools and project management
• Version control extensions (repo browser, gitlab, commits)
• Database integration

TM

What features can we expect?
• Device emulation (built upon simulator and cross-arch

build pipelines)
• Deployment (push releases to flathub, devices, etc)
• Improved documentation access
• Tighter device integration (Librem5, etc)
• More features moved out-of-process for resilience

TM

Questions?

TM

TM

Come Join Us!
https://wiki.gnome.org/Apps/Builder

 🐦@BuilderGNOME
 💬 irc://irc.gnome.org/#gnome-builder

https://wiki.gnome.org/Apps/Builder

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

