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Desktop Linux Development
• Mostly in C/C++
• Build systems from last millennium that are a mess
• Every desktop deployment is bespoke and developers 

throw their hands up and close -EWORKSFORME
• Apps are shipped on OS release cycle, lucky if we get 

security updates at all after initial release
• Debugging in the wild is nearly impossible
• We value independence which can cause fragmentation
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Why Modernize?
• Potential contributors skip past us after it’s too difficult to 

setup workstation for development
• We need new lifeblood to keep desktop Linux going and 

new contributors have more expectations
• Our current level of fragmentation makes it hard to write 

polished software and results in more bugs
• Training contributors is complex and time consuming
• Be more efficient with our time so each of us can do more
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Can we…
• Maintain independence while reducing fragmentation?
• Separate applications from the OS without losing long-

term stability?
• Empower software vendors to ship better software to more 

users in less time?
• Be a playground for ambitious ideas without sacrificing 

stability of the platform?
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Why is it hard to contribute?
• Lacking or missing documentation
• Dependency incompatibility for application vs platform or 

even between two separate applications
• Wide-scale app distribution is hard and costly, so most 

don’t and certainly not across every distro
• Workstation setup is a really high bar for newcomers
• Fragmentation leaves contributors confused about which 

and what platforms to support and to what degree
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Why is it hard to contribute?
• Shifting and different priorities between projects
• Systems complexity and overlapping concerns between 

unrelated projects
• Lack of training materials
• Too many technologies to learn at once
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What makes setup difficult?
• New contributors often ask what Linux distribution to use 

so that they match others setup, out of frustration
• Dependencies for development outpace stable OS
• Bespoke OS deployments result in many WFM bugs
• Getting working stack traces often puts people at odds 

with distribution compiler flags
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Has the ecosystem changed?
• Continuous integration
• Valgrind/ASan/TSan/UBSan more ubiquitous
• Git, Gitlab, Github have by-and-large won
• Containers are everywhere
• Programming language diversity
• Device and interface diversity (laptop, desktop, mobile, IoT)
• Cross-toolchains generally work now
• GL/EGL/Vulkan can now be relied on
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What changes can we expect?
• Immutable base OS with reliable OS updates (ChromeOS 

and Silverblue already here, albeit different designs)
• Containers for applications becomes almost necessary
• Stricter sandboxes for user privacy and security
• Even more kinds of computing devices (possibly at the 

expense of generalized computing devices)
• New models of privileged access (less sudo, more implied 

access via workflow)
• More language diversity as OS vendors are less involved
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So what is this Builder thing?
• Great app with a terrible name (my fault, sorry)
• Likely the first container-native IDE
• Memory conscientious (written in C, read-only mmap() 

search indexes, fancy data-structures when appropriate)
• Every API of consequence is asynchronous by design
• Fast b-tree and rope-based text editor with overview maps 

and buttery smooth scrolling, even on HiDPI systems
• Integrated UI designer based on Glade
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So what is this Builder thing?
• Integration points can be extended with plugins written in 

C/C++, Python, or Vala. Rust support is not far away.
• Unit test integration for build systems
• Debugger integration (currently just gdb, but language 

specific debugger plugins are welcomed)
• Profiler based on the perf-based Sysprof profiler
• Completion, diagnostics, fix-its
• Terminal access to host, build environment, or runtime
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So what is this Builder thing?
• 10 build systems supported and counting
• Easy installation of Builder via Flatpak in two clicks
• Manage developer SDKs to simplify system setup – which 

can now be done in minutes rather than evenings
• Code-indexers with lightening fast fuzzy-search
• Non-opinionated on developer’s language choice
• Multi-monitor support
• Semantic indentation, code-formatting, highlighting
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So what is this Builder thing?
• Code execution abstractions to allow for cross-architecture 

execution (qemu-user-static with flatpak supported 
natively)

• Device abstractions to quickly setup cross-compilation
• Deployment APIs for plugins to support execution on non-

local systems
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Improving Builder
Improves the Platform
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Is contributing easier?
• Preserves independence: bring your own distribution, 

thanks to Flatpak
• Easy install from gnome-software, flathub.org, or an app 

market near you
• Getting a shared toolchain is automatically handled for you 

and your newcomers
• One-click to clone common GNOME apps. One more to 

build, run or debug
• Reducing time to first patch boosts contributor funnel
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What challenges come with a 
container native IDE?
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Challenges - PTY
• Sharing pseudo-terminals across pid namespaces is tricky
• FD passing PTY outside of direct fork()/exec() requires extra 

setup for controlling PTY (TIOCSCTTY ioctl)
• Some shells like ZSH want to coordinate between 

instances and that breaks with multiple pty-namespaces
• Guessing the users preferred shell requires checking 

passwd/getent on the host
• Users expect a shell for their host system, but also for the 

build container, runtime container, etc
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Challenges – FD Passing
• FD passing is a convenient way to share information 

between processes, particularly when shared memory is 
not an option

• If you cross pid/mount/network namespaces, you can exec() 
processes and still have access to stdin/out/err

• IPC with container for high-bandwidth communication
• Podman recently added FD passing support for us
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Challenges – Path Translation
• Different tooling may need to access files outside of 

container (symbols, debugger sources, etc)
• Paths inside the container and outside the container may 

differ (or even clash with host system)
• Some additional work could be required to translate based 

on path such as /usr vs /app in Flatpak
• Tooling that runs in the IDE may use different paths than 

tooling that runs inside build container
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Challenges – Debugging
• Currently we use gdb, but more backends will be supported 

in the future. That requires some abstraction from the 
start.

• Passing FD for PTY to be used by inferior
• Control gdb using primary PTY (using gdbwire+MI2)
• But where does gdb binary come from
• Where do application symbols come from, and does the 

DWARF data (including absolute/relative paths match?) 
• How about __FILE__ and other paths to sources?
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Challenges – Profiling
• Currently we use Sysprof, another project of mine based on 

Linux-kernel perf
• Symbol access has similar problems to gdb, we have to 

resolve that based on project information
• Resolving functions based on instruction-pointer+ELF still 

requires further resolution when symbols in external file
• Containers usually have PTRACE/perf disabled, so we need 

coordiantion from the host (sysprofd in our case)
• Someday, we want to provide sysprofd from Builder flatpak
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Challenges – Execution
• User namespaces should be usable, but lots of CVE means 

that it’s often disabled by default on major distributions
• Suid helpers can help work around this (bubblewrap) but 

not after userns capability is dropped
• Flatpak session helper allows Builder to execute programs 

available on the host (bash, getent, flatpak, etc)
• Can chain features to also get podman-exec, jhbuild-run, 

and whatever is next
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Language Servers
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Language Servers – The Good
• Convenient way to share code between IDEs and Editors
• Allows tooling to run in container matching the build 

environment which can simplify server greatly at cost of 
complicating build environment

• When combined with Flatpak SDK extensions, we can get 
automated setup of complex languages out-of-the-box. 
Relying on user-setup would basically guarantee nobody 
will use them.

• The protocol itself is reasonably good
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Language Servers – The Bad
• JSON is laughably inefficient when dealing with large data 

sets like clang completion results, especially when client-
side filtering is required

• JSON parsers can result in memory fragmentation unless 
you are very careful, resulting in lots of small strings on the 
heap or more fragmentation w/ unpredictable lifetimes

• Builder’s internal language servers optionally use GVariant 
for zero-parse structures and good memory slice reuse. 
Also can reference strings inline from the message

• Many of the language servers out there are brittle at best
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SDKs
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SDK Management
• Flatpak and OSTree based
• SDK extensions allow for extra build components that are 

useful, but specialized, thereby keeping base SDK smaller
• Containerized (using flatpak/bubblewrap)
• Toolchains, libraries, debuggers, build systems, all shared 

by your development team, completely eliminating 
complex system setup

• Incremental SDK updates using OSTree diffs/static-deltas
• GNOME Software can keep SDKs up-to-date too
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OSTree
• Like git for binaries
• Incremental updates by diff of 2 versions
• “static deltas” provide optimized, pre-compiled diff 

between two versions for very fast downloads. Typically 
generated for N-1, N-2 releases

• Content addressed for automatic deduplication
• Hard-link farm design means low-overhead and works on 

any POSIX compliant file-system (but better w/ reflink)
• File-system powering Fedora Silverblue, Atomic
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Flatpak
• Sandboxed (using bubblewrap, now shared with other tooling)
• Using lots of the new container technology such as pid, mount, 

network, and user namespaces
• OSTree based to gain all the benefits designed for large scale 

container deployments
• Runtime vs App split keeps download overhead low, helps 

share and reduce CVE/Security burden beyond distros
• Portals for safe escalation of access from a sandbox
• Usable on top of read-only base OS, live-cd, etc
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Flatpak SDK extensions
• SDKs are really just runtimes before the includes, libraries, 

and build toolchains are removed
• Most if not all the objects shared with runtime will be de-

duplicated automatically by OSTree
• SDK extensions allow specialized tooling to be integrated 

into the mount namespace (golang, java, mono, etc)
• Great place for language servers so that you don’t rely on 

application manifest or host system to provide them
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Flatpak SDK extensions
• Builder automatically discovers and installs them from 

configured flatpak repositories
• Reproducible builds are closer due to shared toolchains and 

other bits that can differ between Linux-based OS
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Plugins
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Builder Extension Points
• Application (singletons)

• Workbench (per project)

• Workspace (per window)

• Editor Page (per buffer view)

• Runtimes (container support)

• Pipeline (hook into build phases)

• Build Configurations

• Run Handlers (how/where to exec)

• Completion, Diagnostics, Fix-its

TM

• Symbol Resolvers

• Debuggers

• Buffer Addin (per-buffer)

• Search Providers

• Project Tree

• Devices

• Unit Test

• Build Targets

• Preferences

• Frame (per page stack)

• Session save/restore

• Commands

• Refactoring (renaming)

• Toolchains (sysroots)

• Hover tooltips

• Project Templates

• Semantic highlighters, 
formatters

• And much more…



  

Writing Builder plugins
• You can write in C/C++, Vala, or Python (with Rust around 

the corner)
• 2 files necessary
• my_plugin.plugin — Plugin Metadata
• my_plugin.py — Plugin implementation

• Subclass and implement plugin interfaces by overriding the 
virtual functions
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Writing Builder plugins

TM

from gi.repository import GObject, Ide

class MyBufferAddin(GObject.Object, Ide.BufferAddin):
    def do_file_loaded(self, buffer, file):
        print(“Loaded file”, file.get_uri())
    def do_save_file(self, buffer, file):
        print(“Saving file”, file.get_uri())
    # …



  

Demo
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What features can we expect?
• More language servers (likely provided via flatpak)
• Simulators API for plugins (maybe for Librem5, GNOME 

developer builds, etc)
• More container support (podman coming soon)
• Maintainer tools and project management
• Version control extensions (repo browser, gitlab, commits)
• Database integration
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What features can we expect?
• Device emulation (built upon simulator and cross-arch 

build pipelines)
• Deployment (push releases to flathub, devices, etc)
• Improved documentation access
• Tighter device integration (Librem5, etc)
• More features moved out-of-process for resilience
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Questions?
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Come Join Us!
https://wiki.gnome.org/Apps/Builder

 🐦@BuilderGNOME
 💬 irc://irc.gnome.org/#gnome-builder

https://wiki.gnome.org/Apps/Builder
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