
Alma Mater Studiorum · Università di
Bologna

SCUOLA DI SCIENZE
Corso di Laurea Magistrale in Informatica

Blockchain-based
end-to-end encryption

for Matrix instant messaging

Relatore:
Chiar.mo Prof.
Stefano Ferretti

Correlatore:
Chiar.mo
Mirko Zichichi

Presentata da:
Julian Sparber

I Sessione: 15/07/2020
Anno Accademico 2019/2020

I dedicate this work to everyone who helped me in the past or
will help me in the future to write a thesis, a blogpost, an email
or any written text. Thanks to them I was able to overcome the

challenges that my dyslexia posed and get this far in my
academic career.

Abstract

Privacy and security in online communications is an important topic to-
day, especially in the context of instant messaging. A lot of progress has been
made in recent years to ensure that digital conversations are secure against
attacks by third parties, but privacy from the service provider itself remains
difficult. There are a number of solutions offering end-to-end encryption, but
most of them rely on a centralized server, proprietary clients, or both.
In order to have fully secure instant messaging conversations a decentralized
and end-to-end encrypted communication protocol is needed. This means
there is no single point of control, and each message is encryped directly on
the user’s device in a way that only the recipient can decrypt it.
This work proposes an end-to-end encryption system for the Matrix protocol
based on blockchain technology. Matrix is a decentralized protocol and net-
work for real-time communication that is currently mostly used for instant
messaging. This protocol was selected because of its versatility and extensi-
bility.
The end-to-end encryption system uses a feature of the OpenEthereum Ethereum
client called Secret Store. This feature allows encrypting data by generat-
ing cryptographic keys that are stored in a distributed fashion across the
Ethereum blockchain. To decrypt the data the decryption keys are retrieved
from the Secret Store, which controls the access to them via a smart con-
tract. The proposed encryption system has multiple advantages over alter-
native schemes: The underlying blockchain technology reduces the risk of
data loss because of its decentralized and distributed nature. Thanks to the

i

ii Abstract

use of smart contracts this system also allows for the creation of an advanced
access control system to decryption keys.
In order to test and analyze the proposed desgn, a reference implementation
was created in the form of a library. This library can be used for future
research, but also as a building block for different applications to easily im-
plement end-to-end encryption based on blockchain technology.

Sommario

Privacy e sicurezza sono tematiche sempre più importanti nelle comuni-
cazioni online. Questa tesi si concentra sulla sicurezza della messaggistica is-
tantanea. Un importante strumento per sostenere una conversazione digitale
confidenziale è la cifratura end-to-end, che permette di cifrare un messaggio
direttamente sul dispositivo dell’utente e di decriptarlo solo sul dispositivo
del destinatario. In questo modo se ne nasconde il contenuto a ogni altra
entità, incluso il fornitore di servizi Internet e l’azienda che offre il servizio
di comunicazione.
In questo lavoro è proposto un nuovo sistema per la cifratura end-to-end
utilizzando Ethereum, una piattaforma basata su blockchain per eseguire, in
maniera distribuita, operazioni computazionali. Più nello specifico Ethereum
è una tecnologia che permette di eseguire codice attraverso gli smart contract.
Il sistema proposto di cifratura end-to-end usa il Secret Store, una funzional-
ità integrata nel client Ethereum chiamato OpenEthereum(Parity). Questo
strumento permette di generare le chiavi crittografiche necessarie per il fun-
zionamento del sistema, in più le immagazzina in maniera decentralizzata e
distribuita e ne regola l’accesso attraverso uno smart contract.
Matrix è un sistema per la comunicazione in tempo reale, oggi principalmente
usato per la messaggistica istantanea. È un sistema decentralizzato, creato
appositamente per essere esteso con nuove funzionalità e pertanto è stato
scelto come protocollo di trasporto per questo progetto. Matrix ha già un
sistema di cifratura end-to-end, ma il nuovo sistema proposto ha un numero
significativo di vantaggi.

iii

iv Sommario

Uno di questi vantaggi è la separazione tra il processo di cifratura e il
trasporto del messaggio, che permette di riutilizzare lo stesso processo di
cifratura per un protocollo diverso da Matrix. Inoltre, grazie all’astrazione
del sistema, sarebbe facile integrare i frutti di questo lavoro in un qualsiasi
software per implementare la funzionalità di cifratura end-to-end.
Ethereum, Secret Store e Matrix sono tutti sistemi decentralizzati e per
questo nessuna parte del sistema proposto deve fare affidamento a una sin-
gola entità per svolgere le varie funzionalità richieste. Il sistema proposto
non ha necessità di backup grazie alla tecnologia blockchain e finché l’utente
mantiene i permessi d’accesso corretti, impostati via smart contract, non es-
iste alcuna possibilità di perdere l’accesso ai messaggi inviati. In più, tramite
gli smart contract, è possibile creare un sistema avanzato per il controllo di
accesso alle chiavi di decriptazione, che può essere utilizzato per aggiungere
nuovi utenti a una conversazione oppure per ritirare l’accesso al suo con-
tenuto in un qualsiasi momento.
In questa tesi è proposto un sistema funzionante di cifratura end-to-end
basato sulle garanzie di sicurezza di Ethereum e di blockchain, per testare
il quale è stata scritta una libreria specifica che potrebbe essere riutilizzata,
grazie al suo design, per altri protocolli di comunicazione. In conclusione,
questa tesi stabilisce una base per la futura ricerca su sistemi di cifratura
end-to-end basati su blockchain.

Introduction

Digital communication is becoming ever more important in today’s mod-
ern society. We are increasingly relying on it for many critical parts of our
everyday lives. Since digital communication is now a basic need, we need
ways to secure and protect the interaction and the system itself. It’s not
enough to encrypt its content, but we also need resilience against system
failures and attacks. Furthermore, it’s important not to only rely on the
trustworthiness of a third party to guarantee the integrity and the privacy
of the system. A good start is to rely as much as possible on open source
software, so that it can be audited and improved by anyone with the skills
to do so.
This work focuses mainly on instant messaging, or IM for short. The most
basic feature of an instant messenger is real time text communication, but
nowadays most people expect much more advanced features such as image
and file sharing, voice messages, and video chat.
Over the past decade the public’s concern about their online privacy has
grown significantly, and as a result people want better privacy and secu-
rity online. Though security has generally improved as a result, not enough
progress has been made to better protect user’s privacy.
Most of the messaging systems used every day by the general public are
centralized services, with one single point of control and hence also a single
point of failure. The most popular services all require the user to trust their
system, without any real possibilities to review or validate what the provider
is actually doing with their data. Most services offer some kind of encryption

v

vi Introduction

to protect user data, but only a few provide encryption which inhibits access
to the conversation content by the provider themselves. These systems may
protect the user against outside eavesdropping or other types of attacks, but
not so much against eavesdropping from inside the system. Therefore, the
user must trust the service provider blindly.
The basic encryption protocols many services have put in place are generally
built on top of solid cryptographic foundations that considerably improve
the status quo, but often their systems are proprietary and thus the user is
still required to fully trust the company and hope that the encryption was
implemented competently. So far, most companies addressed only the basic
protection, but have yet to mitigate the privacy issue. As a result, users are
still left with no power and not much protection.
This is where Matrix comes into play. Matrix is a decentralized communi-
cation protocol, designed to not require any centralized server. Therefore it
does not have a single point of failure and, more importantly, a single point
of control. Its main use case today is instant messaging, but it was created to
accommodate any type of real-time communication[1]. The entire system is
open-source, which means that its source code can be reviewed by anybody
and it is developed by a globally distributed community, composed of many
different companies and individuals. Matrix also has comprehensive public
documentation, which helps the development and allows users to understand
and work on the system.
Any user can run their own server, or join an existing one, through which
they can join the Matrix network. It is possible to run a completely separate
network, which can join the main network at a later point, or stay isolated
forever. Obviously not everybody has the technical know-how or interest to
set up and run their own server. There are already many existing servers,
many of them free of charge, on which a user can create an account and
participate in communications on the Matrix network. This adds up to the
same problem as described previously, but it’s slightly better because the
user’s data is stored only on their server or the server the people they com-

Introduction vii

municate with are on. Still, a server involved in a conversation can read the
messages sent between different users. The only way to circumvent this issue
is end-to-end encryption. This means that a user encrypts their messages on
their own device and only the recipients, selected by the sender, can decrypt
them and read the messages content. Matrix implements an end-to-end en-
cryption system to encrypt the entire communication[2].
The scope of this work is to create an alternative end-to-end encryption sys-
tem which replaces the default end-to-end encryption system used by Matrix.
The proposed system is built on top of the blockchain-based distributed com-
puting platform Ethereum, specifically on OpenEthereums’s Secret Store.
OpenEthereum (previously known as Parity) is an advanced Ethereum client,
that implements a feature called Secret Store[3]. The Secret Store is a core
technology which allows to generating keys for encryption and decryption, it
provides distributed key storage, and has a key retrieval system which uses
smart contracts for permission control[4].
The new end-to-end encryption system proposed in this work has the advan-
tage that it fully separates the encryption of a message from its transport,
because a message is encrypted without any dependency on the protocol that
is used to send it. The Secret Store was selected, among other things, because
it provides an abstraction over the underlying cryptographic primitives. In
addition, it permits the creation of an advanced control system to access the
encryption keys, and hence the conversation. This is especially interesting
when a user can revoke the access to the content of a conversation. Thanks
to the blockchain all the cryptographic keys are stored securely over a dis-
tributed network of nodes, which protects them from attackers and data loss.
As long as the user maintains the correct access permissions via a smart con-
tract loss of the message content is highly unlikely.
This document describes a functioning end-to-end encryption system that
can be used to secure the communication among different parties. In or-
der to enable this, a library was created which can be used as a foundation
to add end-to-end encryption not only to the Matrix protocol, but also to

viii Introduction

other transport protocols. The library is published under the GNU Gen-
eral Public License (GPL-3.0-or-later) and the source code can be found at
https://github.com/jsparber/e2e-secretstore.

The first section of this document is dedicated to the explanation of fun-
damental concepts and to give background knowledge. The second part
contains the proposed design, and a description of the reference implemen-
tation and evaluation of the system. The implementation was written to
experiment, text and analyze the proposed design. This thesis is structured
in the following chapters:

• Cryptography. This section gives a general overview about Cryptogra-
phy and its importance. It explains the most important cryptographic
schemes related to this work. All systems reported in this chapter are
the foundation of the entire project, and they allow it to function as
intended.

• Blockchain. This part gives some background on blockchain technology,
including underlying principles, and the data structures it is buildt
upon. It also explains how the technology is used in cryptocurrencies,
such as Bitcoin and Ethereum.

• Ethereum. This chapter will talk about Ethereum more specifically.
Ethereum is not just a cryptocurrency based on blockchain technology,
but rather a distributed computing platform. This part also explains
smart contracts, the core Ethereum feature used in this work.

• Matrix. A distributed real-time communication protocol. This part
gives an overview of Matrix, describing the overall structure of the
protocol, as well as core features and advantages. For completeness, the
standard encryption method used in Matrix is also briefly explained.

• Proposed designs. This chapter describes the proposed design for the
end-to-end encryption based on OpenEthereum’s Secret Store for Ma-

Introduction ix

trix. This section also describes problems of the system and discusses
possible solutions.

• Reference implementation. To test the proposed design this work in-
cludes a reference implementation. This chapter talks about the tools
and software used for the implementation and gives background knowl-
edge, not included in other parts of this document. It explains the over-
all structure and outlines the most important decisions taken during
the creation of the software.

• Analysis and evaluation. This section contains experiments to test the
performance of the created end-to-end encryption system.

Contents

Abstract i

Sommario iii

Introduction v

1 Cryptography 1
1.1 Symmetric-key cryptography 4
1.2 Public-key cryptography . 5

1.2.1 The RSA cryptosystem 7
1.2.2 Elliptic Curve Cryptosystem 7

1.3 Threshold Cryptosystems . 11
1.3.1 Secret Sharing . 11
1.3.2 Shamir’s Secret Sharing 15

1.4 End-to-end encryption . 17
1.4.1 The Double Ratchet Algorithm 19

1.5 Hash function . 20

2 Blockchain 23
2.1 Centralized, decentralized and distributed systems 26
2.2 Merkle tree . 28
2.3 Blocks . 30

2.3.1 Consensus mechanisms 31
2.4 Smart contracts . 37

xi

xii Introduction

3 Ethereum 39
3.1 Network stack . 40
3.2 Currency . 41
3.3 Smart Contracts . 42

3.3.1 Ethereum virtual machine (EVM) 42
3.3.2 Solidity . 43

3.4 Ethereum clients . 44
3.4.1 OpenEthereum (Parity) 44
3.4.2 Secret Store . 45

4 Matrix 49
4.1 Architecture . 50

4.1.1 Users and Identity . 52
4.1.2 Events . 52
4.1.3 Rooms . 53
4.1.4 Devices . 54

4.2 End-to-end encryption . 54

5 Proposed design 59
5.1 Ethereum . 60

5.1.1 Permissioning contract 61
5.2 Matrix . 66
5.3 Identity verification . 69

6 Reference Implementation 73
6.1 Technical background . 74

6.1.1 Rust . 74
6.1.2 JavaScript Object Notation 75
6.1.3 JSON-RPC . 76
6.1.4 Fractal . 76

6.2 Crypto Module . 77
6.2.1 Public API . 78

Index xiii

6.2.2 Encryption . 78
6.2.3 Decryption . 80
6.2.4 Permissioning contract 81
6.2.5 Client integration . 82

7 Analysis and evaluation 85
7.1 Varying length of messages . 87
7.2 Varying threshold . 89
7.3 Access time to smart contract 90
7.4 Gas usage . 91

Conclusion 95

Bibliography 99

List of Figures

1.1 The frequency of each letter in the English language[5] 3
1.2 Private encryption scheme . 4
1.3 Public encryption scheme . 6
1.4 Elliptic curve y2 = x3 − 3x+ 5 8
1.5 Example of Point Addition[7] 9
1.6 Example of Point Doubling[7] 10
1.7 Safe deposit box. A (2, 2)-threshold scheme 12

2.1 An example of a block and created chains in a blockchain. . . 24
2.2 A centralized system . 26
2.3 A decentralized system . 27
2.4 A distributed system . 28
2.5 Merkle tree . 29
2.6 A sequence of blocks in a blockchain 30
2.7 Byzantine Generals problem 32
2.8 Proof of Work vs Proof of Stake [27] 33
2.9 Energy consumption of the bitcoin network by country[28] . . 34
2.10 Proof of Work vs Proof of Stake. Network dominance.[27] . . 35
2.11 Electing witnesses in a Delegated Proof-of-Stake network[31] . 37

3.1 Simplified network stack of Ethereum[21] 40
3.2 OpenEthereum’s logo (Parity’s logo)[3]. 45
3.3 A Secret Store setup composed of three nodes. 46

xv

xvi LIST OF FIGURES

4.1 Matrix network with 3 homeservers 51

5.1 Abstract process of sending a message between two users: Al-
ice and Bob. 60

5.2 Interaction with the permissioning contract. 61
5.3 Layout of memory used in the permissioning contract. 62

6.1 Overview of different modules in the reference application. . . 73
6.2 Overview of the internal structure of the reference implemen-

tation. 77
6.3 Flow of function calls to encrypt a document 79
6.4 Flow of function calls to decrypt a document 81
6.5 Modified interface of Fractal. 82

7.1 Test network setup . 86
7.2 Time of encryption and decryption for messages with different

length. 87
7.3 Time of encryption for messages with different length, split

into encryption time and time to set the access permissions
via smart contract. 88

7.4 Time of encryption and decryption using different thresholds. 89
7.5 Time of encryption using different thresholds, split into en-

cryption time and time to set the access permissions via smart
contract. 90

7.6 Time to set access permission with increasing number of al-
lowed users, and the time to check permission via smart contract. 91

7.7 Gas used for setting access permission with increasing number
of allowed users. 92

List of Tables

1.1 Faulty Secret Sharing: pieces of each individual 13
1.2 Faulty Secret Sharing: knowledge about the secret based on

the number of shares[8] . 13
1.3 Comparison of message digest produced by different hash func-

tion for the same input string: ”lorumipsum” 22

3.1 The Ether denominations[37] 41

xvii

Chapter 1

Cryptography

In this chapter a general introduction to cryptography is given and it
describes important cryptography schemes and primitives related to the pro-
posed encryption system.
Historically cryptography, often referred to as classical cryptography, was
considered to be an art form that tries to creatively create procedures and
processes to transform understandable information into a gibberish message,
so that no one who doesn’t know the algorithm used to transform the infor-
mation can still understand it. Before the 1980s, cryptography was essen-
tially the process of creating algorithms, that satisfy the objective, mostly in
an innovative and inventive manner[5]. Cryptography wasn’t based on any
scientific foundation and had no general definition to define what could be
considered as a good and secure system. Today’s cryptography on the other
hand is built on solid mathematical constructs and it defines specific criteria
to analyze the system and to determine its security.
Classical cryptography was only about encrypting information, the process
of making a data unreadable for everyone except for the party who is de-
sired to read it, intuitively, the receiver requires some information on how
to obtain the original content. Encrypting is the process of translating a
so called cleartext, the understandable message, into an unreadable message
called ciphertext. The operation of converting the ciphertext back from its

1

2 1. Cryptography

unreadable state into a readable message is called decryption.
Back then, cryptography was used only by the military and governments[5].
But the modern systems, created by today’s cryptographers, are used by
millions of people every day, and it’s the foundation of every secure digital
activity.

Cryptography doesn’t study anymore only how to encrypt and decrypt
information, but it includes a much wider area of interest. Applications
include identity verification, data integrity, digital currencies and much more.
A core principle of modern cryptography on which all cryptographic schemes
should be built on is:

Kerckhoffs’s principle. The cipher method must not be required to be
secret, and it must be able to fall into the hands of the enemy without
inconvenience[5].

This principle says that an encryption scheme must be public and that
security by obscurity is bad practice to provide a secure system. The secrecy
guarantee needs to rely only on the secrecy of a key but not on the secrecy
of the protocol itself.

One of the best and oldest known encryption schemes is the Caesars ci-
pher. The scheme takes a sentence and rotates each character of the input
string by a certain number of positions in the alphabet. Caesar always ro-
tated by three positions, but to respect Kerckhoffs’s principle let’s assume
that the key is variable.
Let’s take the sentence ”This is a top-secret sentence” as an example. When
rotating each character by three positions in the alphabet the ciphertext
”Xlmw mw e xst wigvix wirxirgi” is obtained. The resulting string looks
pretty random at first glance and it’s not possible to read the message. To
return to the cleartext it’s just the simple task of rotating each character
back by three positions in the alphabet. Although the ciphertext looks like
gibberish it actually gives quite some information about the original text. To
analyze the security of the cipher, it’s necessary to first define what the cipher

3

tries to accomplice and what security means in this context of this algorithm.
Informally, the objective is that a ciphertext obtained by encrypting a mes-
sage via Caesars cipher can’t be decoded by anybody who doesn’t know how
the cipher works. A scheme is secure in this context if it satisfies the previ-
ous stated objective. It’s relatively easy to see that Caesar’s cipher doesn’t

Figure 1.1: The frequency of each letter in the English language[5]

satisfy the objective. The scheme is relatively easy to break via statistical
analysis attack. It’s possible to use knowledge about the English language
to easily find the key. The figure 1.1 shows the frequency of each letter in
the English alphabet. Since the letter ”e” is the most frequent letter in the
English alphabet it’s possible to link it to the most frequently used letter in
the ciphertext, thus obtain the used key. Even without any knowledge about
the frequency of the letters, it would be simple to gain access to the key by
trying all 26 possible keys. This type of attack is called brute forcing. In this
case a brute forcing attack can be done in less than a second via a computer,
but also doing it by hand would be relatively quick.

4 1. Cryptography

1.1 Symmetric-key cryptography

Symmetric-key encryption, or sometimes called private-key encryption or
also just encryption, is used to encrypt data via an encryption scheme that
allows data to be encrypted and decrypted generally with the same key. It
is often used to protect an information that is later retrieved by the same
person for example disk encryption where it isn’t required to share a key with
anybody. If the data is intended to be shared with somebody else the key
needs to be shared over a secure channel. Figure 1.2 shows a typical setup of
a communication between two parties, Alice and Bob. Both have the same
key in memory and hence they can access the message. An attacker, Eve,
who is eavesdropping on the conversation between Alice and Bob can’t read
the message because they don’t have access to the key used by Alice to en-
crypt the message.

Figure 1.2: Private encryption scheme: Alice sends an encrypted message to
Bob. Both parties use the same encryption key. Eve is some third party who
only sees the ciphertext, they know the algorithm used for encryption and
decryption but do not have access to the key and hence not to the message.

Symmetric ciphers can be divided into two types[6]:

1.2 Public-key cryptography 5

• Stream cipher. This type of cipher encrypts each input bit individually
by adding a bit from a key stream to the plaintext bit[6]. An example
for this type of cipher is the Vigenère Cipher or also called substitution
cipher, which works on the same principles as the Caesar’s cipher,
substituting letters but in a more secure way.

• Block cipher. Block ciphers on the other hand take a chunk, a block
of the plaintext bits, and encrypted it with the key. This implies that
the encryption of any plaintext bit depends on every other plaintext
bit in the same block[6]. Advanced encryption standard (AES) uses for
example a block length of 128 bits.

1.2 Public-key cryptography

Public-key cryptography is quite different from symmetric-key cryptogra-
phy explained in the previous section. It’s based on mathematical primitives
which allow to generate two different keys. The first key, called public-key,
is used to encrypt and the second key is used to decrypt data or a message.
The public-key can be published without any restriction, also to an attacker.
A widespread knowledge of the public-key can improve the overall security.
This implies that no secure channel is needed to distribute any shared-secret,
because there is none. The private-key is the secret part of the system and
must be kept secure and shouldn’t be shared with anybody.
Public-key ciphers are often used directly to allow different parties to com-
municate securely, but they can also be used to establish a secure communi-
cation channel so that a secret key can be shared, which has the advantage
that it enables the possibility to use symmetric-key encryption that operate
generally faster than this type of encryption.
Public-key cryptography isn’t limited just to encrypting data, it is a pri-
mary ingredient to assure confidentiality, authenticity and non-repudiation
in modern cryptography. It is used for many applications including identity
validation, document signing and user authentication.

6 1. Cryptography

Figure 1.3 shows an example of a secure message exchange between Alice
and Bob. Alice and Bob exchange their public key via some key exchange
protocol, obviously they don’t communicate the private part. Then Alice
encrypts a message for Bob using Bob’s public-key and sends it to them.
Bob decrypts the obtained message via their private-key. An attacker Eve
eavesdrops on the communication channel and obtains the public-key of Alice
and Bob as well as the ciphertext. Eve can’t decrypt the sent message be-
cause they would need the private-key it was encrypted for, but the attacker
could encrypt their own message for Bob using the public-key they know.
This system makes the content completely unreadable to an adversary, but
it doesn’t guarantee the authenticity of the sender. Public-key cryptography
can be used to solve this problem as well.

Figure 1.3: Public encryption scheme: Alice sends an encrypted message to
Bob. The parties have already exchanged their public keys. Alice encrypts
a message for Bob and sends it. Eve is some third party who obtains the
ciphertext of the message and the public keys of Alice and Bob. Eve knows
the algorithm used for encryption and decryption but since they don’t have
access to the private key, they can’t decrypt the intercepted ciphertext. The
attacker could encrypt their own message for Bob and send it.

1.2 Public-key cryptography 7

1.2.1 The RSA cryptosystem

RSA is the one of the first cryptosystems realized to use the full potential
of public-key cryptography. The name RSA comes from the initials of the
creators Ronald Rivest, Adi Shamir and Leonard Adleman[6]. The system
was created in 1977 and is today one of the most used cryptosystems.
The main use cases for RSA are[6]:

• Data encryption. RSA is generally used only for small data sizes be-
cause it’s much slower than symmetric-key encryption, for example it’s
used for key transportation.

• Digital signatures. Systems which allow a recipient of a digital message
or document to verify the authenticity of the data.

RSA is built on the mathematical problem of integer factorization. It
is computationally easy to multiply two prime numbers, and it could also
be done by hand on paper. But it is extremely hard to factorize the result
and find the two prime numbers. This type of function is called one-way
function because it’s easy to calculate in one direction but it’s extremely
hard to reverse.

1.2.2 Elliptic Curve Cryptosystem

Elliptic curve cryptosystems (ECC) are the newest type of systems to
create a public-key cryptosystem. Even though this approach exists since
the 1980’s, it’s just lately that it got much more attention and interest.
It offers significant advantages to other public-key cryptosystems. Elliptic
Curve Cryptography provides the same level of security as RSA but with
much shorter key length, which can significantly improve efficiency and re-
duce network traffic overhead.
RSA is constructed based on the difficulty of factoring prime numbers, on the
other side elliptic curve cryptography is based on the difficulty of solving the

8 1. Cryptography

elliptic curve discrete logarithm problem[7]. The elliptic curve discrete loga-
rithm problem is basically the problem of determining the number of steps
needed to move from one point on a elliptic curve to a different point[7]. Even
if the the equation for the curve and the start point is known, it’s impossible
to determine the number of hopes that were made between the start point
and another point on the same curve[7].

Elliptic Curve Discrete Logarithm Problem. Given two points P and
Q where Q is a multiple of P . Find k such that Q = kP .

The security of ECC is built on top of the difficulty of solving the above
problem[7].

To better understand the ”hopping” on a curve let’s look at some char-

Figure 1.4: Elliptic curve y2 = x3 − 3x+ 5

acteristics of an elliptic curve. An elliptic curve used in cryptography is a

1.2 Public-key cryptography 9

plane algebraic curve in the form of y2 = x3 + ax + b, where x and y are
the standard variables used like in any other algebraic function to represent
points on a Cartesian coordinate plane. The coefficient values a and b trans-
form the elliptic curve and define its specific appearance. An elliptic curve
is symmetric in respect to the x-axis, and any non-vertical line intersects the
curve in at most 3 points[7].
Figure 1.4 shows an elliptic curve on a Cartesian coordinate plane with the
coefficient values a = −3 and b = 5.
Elliptic curve cryptography uses essentially two operations for hopping be-
tween points on an elliptic curve in order to find values used for encryption[7]:

Figure 1.5: Example of Point Addition[7]

• Point Addition. This is an operation that allows to derive a new point
starting from another point on an elliptic curve. Given two points P

and Q, a third point is created by drawing a line that goes through the
points P and Q, as shown in figure 1.5. This results in a newly formed
point at the intersection between the line and the elliptic curve, that
is called −R [7]. Since an elliptic curve is symmetric to the x-axis, this
also creates a point R, also shown in figure 1.5. By finding the point
−R it’s simple to obtain the sum between P and Q, hence P +Q = R.

10 1. Cryptography

This progress then can be repeated by drawing a line crossing P and
R which creates another point on the curve and finally by drawing a
vertical line at this point a new point is found that is the sum between
P and R[7].

• Point Doubling. This is another operation used in ECC. It works sim-
ilar to Point Addition but instead of adding two points, the point P is
added to itself[7]. Instead of drawing a line crossing two points, a tan-
gent line to the point P is drawn, as shown in figure 1.6. This line then
intersects the elliptic curve at some point −R. Finally a vertical line
through the point −R is created and the intersection with the elliptic
curve gives the point R, hence 2P = R [7].

Figure 1.6: Example of Point Doubling[7]

In addition to Point Addition and Point Doubling, ECC also uses the concept
of finite field[7]. It isn’t possible to include every possible point found on an
elliptic curve, therefore, the set of valid points is limited by a point called p.
The point p represents the key size and by increasing it’s value the security
of the system can be increased[7].

1.3 Threshold Cryptosystems 11

1.3 Threshold Cryptosystems

A Threshold cryptosystem is a system that allows to encrypt an infor-
mation with a public key. The private key is then distributed among all the
participating entities, and no entity should be able to access the decryption
key and therefore be able to obtain the original information (or any part of
it) without the agreement of at least a predefined number of parties. In a
system that has n parties and uses t as a threshold, the minimum number of
parties that have to give consent, is called (t, n)-threshold. In a similar way
it’s also possible to create a signature scheme which requires multiple parties
to sign a document. Many different public-key encryption schemes can be
used to create a threshold cryptosystem.

1.3.1 Secret Sharing

Informally, secret sharing is any process that allows to split a secret into
shares and to distribute the shares among a group of individuals called
shareholders[8]. Such a system requires also that no single individual can
retrieve the information without at least some number of other shares, this
means that each share doesn’t expose any information about the shared se-
cret.
Generally the objective is to create (t, n)-threshold scheme, where a secret S
is divided into n shares and given to n shareholders, so that the knowledge of
at least t shares is needed to make the secret S easily retrievable, but fewer
than t shares expose no information at all about S.
Secret sharing is useful for managing and securing cryptographic keys. It is
simple to protect data by encrypting it, but for protecting encryption keys
different systems are required. Secret sharing schemes try to address this
issue. They are systems that are more resilient to data loss and more secure
against security breaches because they distribute the secret over multiple
individuals[9]. This implies that also its control is shared among more enti-
ties, hence making it more difficult for attackers to obtain the shared secret

12 1. Cryptography

because they need to obtain many different pieces from different parties.

Figure 1.7: Safe deposit box. A (2, 2)-threshold scheme

An example of secret sharing is a safe deposit box in a bank. Normally
they use two separate keys and both keys are needed to open the deposit box.
One key is given to the client and the other one is kept by the bank manager.
This way none of the two parties can access the content by themselves, thus
both are required to open the box. This example creates a (2, 2)-threshold
scheme, since it requires the two shares of both individuals to access the
secret, in this case the deposit box.

Example of insecure secret sharing

Let the following system be a (4,4)-threshold scheme. The secret is S =

”somesecuresecret”. The secret S is split in four equal parts and distributed
to the four individuals as shown in table 1.1.

This system is faulty because each individual already knows one-fourth
of the secret S. But a secure secret sharing scheme requires that no party
can gain any knowledge about the secret without overcoming the threshold,
in this case all four individuals are required.

The table 1.2 shows how much knowledge is gained based on the number
of shares obtained. The third column shows the number of possible values
an attacker would need to guess to retrieve the secret S. The objective in

1.3 Threshold Cryptosystems 13

S some secu rese cret
s1 some
s2 secu
s3 rese
s4 cret

Table 1.1: Faulty Secret Sharing: pieces of each individual

shares missing letters possible values
0 16 2616

1 12 2612

2 8 268

3 4 264

4 0 260

Table 1.2: Faulty Secret Sharing: knowledge about the secret based on the
number of shares[8]

a secret sharing scheme is that even when t − 1 shares are known it’s still
impossible to know anything about the secret itself. In this example the
desired outcome would be that with t− 1 shares the possible values are still
2616, but already with only two shares the number of unknown values is cut
in half.

Trivial secret sharing

There are three types of secret sharing:

(t, n)-threshold scheme with t = 1 In the most trivial system of secret
sharing, the secret can be shared directly among all parties, since every
individual can access the secret without any consent from other parties.

(t, n)-threshold scheme with t = n There are many different schemes
which allow to share a secret among n individuals where every share is re-

14 1. Cryptography

quired to retrieve the secret. Two examples of this type of systems are[8]:

• The secret is encoded as an integer S. Let’s give to each participant i,
out of the n participants, a random number ri, excluding one partici-
pant k. Let’s give to the shareholder k, who has not received any share
so far, the number calculated by this formula (S−r1−r2− ...−rn−1).
To obtain the secret S it’s the simply matter of summing up the shares
of all shareholders.

• The secret is encoded as a byte S. Each shareholder i, excluding share-
holder k, obtains a random byte bi. The shareholder k receives the re-
sulting byte of (S⊕ r1 ⊕ r2 ⊕ ...⊕ ri), where the ⊕ is the bitwise XOR.
To retrieve the secret S a bitwise XOR of all shares is calculated.

(t, n)-threshold scheme with 1 < t < n This type of secret sharing is
more complex than the other two, since the objective is to create a system
that is secure but it doesn’t require all shares to retrieve the secret. Also, this
kind of system can’t release any information at all about the secret without
reaching the number of shareholders to overcome the threshold, otherwise it
wouldn’t be secure.
Consider a secret of a company that is shared among the members of the
board of directors. The business doesn’t want that one individual has full
power over the company’s secret, but it would also be unwise to require all
shareholders to access the secret, because some of them could be unable to
access (for example if they die) and therefore it would be impossible to access
the secret ever again. A possible solution would be a (n

2
, n)-threshold scheme

where a majority is required to gain access to the secret.
It is possible to create this kind of scheme based on a (t, t)-threshold, like
one of the above examples. The (t, t)-threshold scheme is used n times then t

shares are distributed to each individual[8]. Since each individual is required
to store multiple shares this solution isn’t space efficient and there are better
solutions for this problem.

1.3 Threshold Cryptosystems 15

The parameters t and n

The choices of the threshold t does heavily depend on the application as
well as the number of individuals n. A secret sharing scheme is appropriate
to be used in a situation where a group of mutually suspicious individuals
with conflicting interests are required to cooperate[8]. This setting still needs
a sufficient large majority to be able to perform an action or access the secret,
but on the other hand it also requires to have a sufficient large minority that
could block an action or deny access to the secret. The choice over different
thresholds comes with a couple of trade-offs. By increasing the threshold t for
a given number n of individuals it reduces the availability of the secret, the
access to the shared information, but on the other side it also increases the
secrecy of the shared information. The secrecy can be defined by the number
of shareholders that an attacker is required to convince or compromise to give
up their shares to gain access to the secret. The integrity of the scheme is
set by the number of parties an attacker needs to corrupt at least to modify
or change the secret, it’s calculated by n− t+ 1. Therefore, the selection of
the threshold must be adjusted for different use cases as well as for different
situations.

1.3.2 Shamir’s Secret Sharing

Shamir’s Secret Sharing is an efficient way to share a secret and imple-
ments a (k,n)-threshold scheme. The objective is to split some data S into
n pieces S1, ...Sn so that it satisfies the following requirements[9]:

• the knowledge of any k or more Si slices turns S easily computable.

• the knowledge of any k − 1 or fewer Si slices leaves S completely un-
determined, which means that all possible values for a secret have the
same probability to be the real data S.

Shamir’s Secret Sharing scheme is based on polynomial interpolation[9]. It

16 1. Cryptography

would also be possible to use any other collection of functions that allows an
easy evaluation and interpolation.

Theorem 1 (Interpolation). Given k distinct points x1, ..., xk and the cor-
responding values y1, ..., yk, there exists a unique polynomial q(x) of de-
gree k − 1 such that q(xi) = yi and consequently interpolates the data
(x1, y1), ..., (xk, yk)[9][10].

A random k − 1 degree polynomial is created in the form of q(x) =

a0 + a1x + ... + ak−1x
k−1 where a0 is set to S encoded as an integer, so

a0 = S. Without losing generality it’s possible to assume that every data
S can be represented as a number. To obtain a share for each shareholder
S1 = q(1), ..., Si = q(i), ..., Sn = q(n) is calculated.
Provided any subset of size k of the values Si and their identifying indices i

it’s possible to find the coefficients of q(x) by interpolation, hence gain access
to the secret S by calculating S = q(0). The knowledge of less than k − 1

share, at the contrary, doesn’t give enough information to calculate S.
Shamir’s Secret Sharing scheme uses modular arithmetic instead of real arith-
metic to make the calculation more precise. The system uses a set of integers
modulo a prime number p, that is bigger than the integer S and n, this cre-
ates a field where interpolation is possible. Then the coefficients a1, ..., ak−1

in q(x) are randomly selected from a uniform distribution over the integers
in the set [0, p) as well as the values S1, ...Sn are retrieved modulo p.
Assuming that an attacker gains access to k − 1 shares, for every possible
value S ′ in [0, p) they could create one unique polynomial q′(x) of degree
k − 1 such that q′(0) = S ′ and q′(i) = Si for the available k − 1 arguments.
By design all p possible polynomials have the same probability and therefore
the opponent can’t deduce any information about the real secret[9].
There are efficient algorithms which interpolate a polynomial through n

points with complexity of O(n log 2n)[11], but even with less efficient quadratic
algorithms it would be acceptable fast to interpolate and to create a usable
key management system[9]. In addition to its computational efficiency this
type of system is also space efficient since no key is bigger in size then the

1.4 End-to-end encryption 17

data S. Shares can’t be arbitrarily short, the prime number p needs to be
bigger than n+1 because the set [0, p) needs to contain at least n+1 distinct
values to calculate q(x).
The following list summarizes some of the key features of the Secret Sharing
scheme created by Shamir[9]:

• The size of each share doesn’t exceed the size of the original data, by
splitting the data into smaller pieces the size of the shares could be
reduced.

• As long as k is fixed the scheme allows easily to add and remove shares
dynamically. To remove a share the shareholder is required to com-
pletely give up the knowledge of the share.

• It’s possible to generate a new set of shares Si without changing the
original secret S. This can be done by creating a new polynomial
q(x), which can significantly increase the security because an attacker
would have to gain access to enough shares from the same generation
to overcome the threshold in order to retrieve the secret S.

• A scheme created in this way has the ability to create a hierarchical
structure by using tuples of shares where individuals with a higher
power receive more shares and this way have more control over the
secret. Imagine a board of directors of a company. The president gets
three shares, the vice-president obtains two shares and other stake-
holders get one share. By creating a (3, n)-threshold scheme the secret
can be accessed by any three executives, by two executives when the
vice-president is present, or the president by themselves.

1.4 End-to-end encryption

In online communication, end-to-end encryption is used to make sure that
the conversation between two users can only be read by them[12]. Users can

18 1. Cryptography

be humans, but the same principles can be applied to machine communica-
tion as well.
Generally, a public-key cryptosystem is put in place to share the keys between
the parties and may also be used to encrypt the content. Some systems use a
private-key cryptosystem to improve performance and use an asynchronous
system to share the encryption keys which then are used by both entities.
Communication systems which do not implement end-to-end encryption can
be vulnerable to eavesdroppers. End-to-end encryption doesn’t protect only
against outside attackers but makes it also impossible for anybody who
doesn’t have access to the decryption keys to read the content. This re-
duced significantly the required trust the user must give to the provider of
the communication system because they have no way to access the content
of the conversation. Of course, the keys need to be stored in a secure way
and can’t be shared with third parties, which would impact significantly the
security of the system. Many services that claim to fully encrypt messages
send by users often use closed source implementations that are not possible
to independently inspect and validate. Even worse they often store cryp-
tographic keys on their server[12]. This puts the keys not only out of the
hand of the user, but it also leaves the provider in full control over the keys,
so anyone who compromised the security of the company would obtain the
content of a conversation. Obviously if anybody would gain access to the
keys used for the communication that entity could eavesdrop on the traffic.
Furthermore, a well implemented e2e encryption system does obfuscate also
the data from the internet service provider as well as from any server which
forwards the communication to the receiving user.
Additionally, an end-to-end encryption system needs to provide a method to
verify that the user receiving authorization (or the decryption keys) to read
the message is actually the correct user. If there is no way to identify a user
an attacker could still listen to the conversation by putting themselves in
the middle of the traffic. The attacker would work as a relay who has two
interaction points, one that talks to the real sender and another one that

1.4 End-to-end encryption 19

forwards the messages to the real destination. The attacker would simply
present themselves to be the receiver to the real sender and to be the sender
to the receiver of the message. This form of intrusion is called man-in-the-
middle attack.
End-to-end encryption still leaves the user unprotected from attacks that
target directly the user’s computer, eventually the invader could capture the
message before it wasn’t encrypted or when it was already decrypted. It
could also be possible that an attacker steals the cryptographic keys from
the user’s machine and this way get access to the conversation.

1.4.1 The Double Ratchet Algorithm

The Double Ratchet Algorithm is a key management algorithm that to-
gether with other cryptographic protocols is used to provide end-to-end en-
cryption for instant messaging. It was initially created for Signal, a fully
encrypted instant messenger, by Trevor Perrin and Moxie Marlinspike in
2013[13]. Nowadays it’s used by many different platforms like WhatsApp[14],
Wire[15], Matrix[16] and many more.
The algorithm is called double ratchet because it combines a cryptographic
ratchet based on the Diffie–Hellman key exchange and a ratchet based on a
key derivation function (KDF) for example a hash function. Diffie–Hellman
key exchange is a secure protocol for exchanging cryptography keys over a
public communication channel.
The Double Ratchet Algorithm uses, after the initial key exchange, short-
lived session keys which are constantly renewed. The algorithm is said to be
self-healing because in certain situations the protocol inhibits an attacker who
has gained access to session keys from reading the cleartext of the conversa-
tion after one message has passed the attacker without them compromising
the message[17].

20 1. Cryptography

1.5 Hash function

A hash function is a one way function, a function that is easy to cal-
culate in one direction but it’s basically impossible or infeasible to invert,
which maps a string with an arbitrary length to a string, often called hash or
digest, of fixed length. This type of functions have many use cases and ap-
plications because they allow to convert a string from any length into a hash
with fixed length where the output doesn’t release any information about the
input string. Hash functions are a cryptographic primitive used for digital
signature, message authentication codes and for other forms of authentica-
tion. One of the most importation features of a hash function is that they
return always the same digit for the same input string, this property is used
to proof the authenticity of data. It is often used in combination with public-
key schemes which provide confidentiality of the message.
A simple and often used application of a hash function is to give a user the
possibility to verify the integrity of a file or software downloaded from the
Internet. The user calculates a hash value of the downloaded file on their
own, and then they compare the generated value with the value obtained
from the provider of the file.

To satisfy basic security requirements any cryptographic secure hash func-
tion needs to have the following properties:

• Determinism. Provided the same input string to a hash function, it is
required that the same output hash is generated.

• Quick computation. The calculation of a hash, starting from any input
string, needs to be fast.

• Collision resistance. It is required that it is highly unlikely that two
different input strings generate the same hash as output. In other
words, it needs to be difficult to find two messages which have the
same digest.

1.5 Hash function 21

• Non invertibility. A digest can’t expose in any circumstances any in-
formation about the original message which was used to generate the
digest.

• Avalanche effect. Every change, also only of one character, of the input
needs to create a completely different digest.

Over the past year cryptographers have created a number of different hash
functions, some of them have already known weaknesses and others seams
secure enough for now and nobody could find an attack to compromise their
security. A few of the most used hash functions which are standardized are:

• MD5. It was developed in 1992 by Ronald Rivest. The MD5 algorithm
is designed to be calculated quickly and it returns a 128-bit message
digest. This algorithm is obsolete nowadays since it’s relatively easy
to find hash collisions and therefore it shouldn’t be used anymore, at
least not for security relevant applications.

• SHA-1 (Secure Hash Algorithm 1) SHA-1 was created by the NSA and
standardized by the National Institute of Standards and Technology
(NIST) in 1993. Shortly after it was redrawn and in 1995 the now used
version was published. This algorithm produces a 160 bits long digest.
In 2017 it was shown by Google with the so called SHAttered attack
that it it’s possible to find two colliding messages that create the same
digest, with a method which is significantly faster than a brute forcing
a SHA-1 collision with a birthday attack[18].

• SHA-2 (Secure Hash Algorithm 2). SHA-2 was also created by the
NSA. It has a similar internal structure to SHA-1. SHA-2 is divided
into two distinct hash functions: SHA-256 and SHA-512. There excise a
few other variants which are derived from the two mentioned functions.
The number in the name represents the bit size of the output, e.g SHA-
256 creates a 256 bit message digest.

22 1. Cryptography

• SHA-3 (Secure Hash Algorithm 3). SHA-3 was standardized and pub-
lished by NIST in 2015. The SHA-3 is part of a broader cryptografic
hash function family called Keccak. All function in this family use
a sponge construction, different then the Merkle–Damgård construc-
tion used by SHA-2, SHA-1 and MD5. And therefore, this family is
resistant to the length extension attacks. Ethereum uses a slightly
different version of SHA-3, called Keccak-256, which can create some
confusion because the SHA-3 is sometimes used interchangeably with
Keccak-256[19].

hash function message digest length
M5 946c a9b0 fcc3 5f84 678a dc2d f85e 43e8 128 bit

SHA-1 5e6c 2c9f 1116 ab3a 36bc e9c8 44ab 34b7 df3a a747 160 bit

SHA2-256
34d7 9f3c 1113 ad6d 6550 ccdb b750 3670 9a22 9107
55ec 2f4a d09e c551 d49c 3cdf

256 bit

SHA2-512

636e c24d b100 9600 480e 6902 da98 c9d3 b7a1 f7ef
754f 9368 0d37 5504 5b4c e272 77a5 051c b60d 3e1b
5941 6978 cb10 5c7f d33b 3783 6487 d07f a590 23ae
e32a ec91

512 bit

SHA3-512

267a 7f7b 73ee cdef 8ef2 04a5 53be 51c5 6c5b a5ab
4388 993d ba5c 6d3f 7ea5 e68e 047f 2902 bb85 831f
f619 2020 9e96 bc0a d8c7 14bb ca3a 50d7 39f8 6ccc
fa6b abf8

512 bit

Keccak-256
0326 0d84 f984 f392 6310 92b4 89a1 13f9 2424 e08d
8afe 1fa4 b159 f759 b452 b309

256bit

Table 1.3: Comparison of message digest produced by different hash function
for the same input string: ”lorumipsum”

Chapter 2

Blockchain

The blockchain has many different definitions, depending on who you ask
the question you can receive a different answer because there is so much in-
terest from different areas in blockchain technology. The blockchain emerged
together with its first implementation Bitcoin. Bitcoin was created in 2008
by an unknown person or group named Satoshi Nakamoto[20]. The main
purpose of Bitcoin is to create a decentralized digital currency. While Bit-
coin is a cryptocurrency, the underlying blockchain technology was used to
create a wide range of different systems. This chapter will focus mostly on
use cases beyond its application in finances, since that isn’t the scope of this
thesis.
A blockchain is essentially a data structure that allows to store data in a non-
structured manner. The information is distributed over a network of nodes.
Records which store the user’s data are called transactions. A transaction is
inserted into a logical group for organization named block[21].
The name blockchain comes from how it operates: each block is linked to the
previously created block, so in this way a single linked list or chain is created.
Each block therefore requires a pointer to the previous block. Normally the
pointer is a cryptographic hash of the former block. Each block can also
contain more metadata, like the timestamp, but the full structure of a block
depends on the specific design of the system.

23

24 2. Blockchain

The distributed nature of a blockchain also requires a distributed process
to produce new blocks. Different blockchains have different ways to create
them, and manage the flow of blocks’ validation differently. Some of the
specific methods are discussed later in this chapter. Each newly produced
block is attached to the end of the chain by incorporating the hash of the
previous block. This obviously can produce two blocks at the same time be-
cause usually there is no centralized authority, and when this happens a fork
in the chain is introduced. The creator of a new block, typically, attaches it
to the longest chain they know.

(a) A possible block structure in
a blockchain

(b) A chain in a blockchain, the
green block is the origin which
doesn’t have any parent. The
main chain is shown in darker
blue, and the blocks in light blue
are shorter chains, that have split
off from the main one.

Figure 2.1: An example of a block and created chains in a blockchain.

Some of the key features of a blockchain based system are:

25

• Immutability. Data added to the blockchain can’t be changed. Even
though it could be done with a huge amount of computing power, it is
considered nearly impossible to modify data, therefore the blockchain
is considered immutable[21].

• Transparency. Most blockchain implementations are open source, which
allows contributions by anyone and it makes the system publicly au-
ditable. Any transaction stored in a block is public and can be re-
viewed by every entity using the blockchain. This obviously reduces
confidentiality and privacy, but many applications need to audit the
flow of transactions in order to avoid the problem of double spending
and other related problems.

• Distributed consensus. Blockchains use different mechanisms to reach
an agreement among different nodes on how to create new blocks.
Those methods are called distributed consensus. There are many differ-
ent possible methods to create an agreement between nodes. Therefore,
no single node has control and makes decision, but multiple parties are
required to agree to give the consensus.

• Security. The blockchain technology is built on the top of a proven
cryptographic primitive, like for example hash functions, to ensure the
integrity of the data. The immutable nature of the data allows everyone
to verify the information, as well as it’s nearly impossible to manipulate
the stored data.

• Smart contracts. Smart contracts are essentially code run on top of
the blockchain. Not every blockchain implements smart contracts, but
because of its versatility it’s a much-desired feature[21].

26 2. Blockchain

2.1 Centralized, decentralized and distributed
systems

There are three major topologies regarding how networks can be struc-
tured. This chapter will explain the main properties and the differences
between them.
First let’s define what a network is in the context of this work. A network
is a system with several nodes that are in some way connected and can com-
municate. Each node is one unit interacting with other nodes in the system.
A node can be for example a physical device.

• Centralized system. Each node communicates exclusively with the cen-
tral node, in figure 2.2 the green node is the central point. It’s the
simplest structure, because it doesn’t require any complex system for
consent, or to resolve inconsistencies of the system’s states. This type
is the most used system because of its simplicity.

Figure 2.2: A centralized system. Each circle is a node, while the green circle
is the central server node. Every client node interacts only with the central
node.

A centralized system is often referred to as a client-server system. Nor-
mally the server provides a service, for example it can offer a webpage.

2.1 Centralized, decentralized and distributed systems 27

Each node, other than the server, is a client and it doesn’t interact
with anybody other than the server. It’s still possible to allow commu-
nication among multiple nodes but the traffic must always be relayed
by the central node. Generally, all the data are stored on the central
server, and users update the system’s memory or state via requests to
the server.
Centralized systems give a great control over the data flow, as well
as over the entire systems, since it has by design a central authority.
The centralization also comes with downsides, the architecture is much
more prone to system failures and it comes with many privacy issues.

• Decentralized system. This type of system is quite different from a
centralized system. A decentralized system has multiple central points,
shown as green circles in figure 2.3. This topology requires a more com-
plicated process to keep the system consistent, since no single point has
the full power over the network. Also, it needs sophisticated processes
for consent and to establish an agreement between different nodes.

Figure 2.3: A decentralized system. There are multiple central nodes, shown
as green circles. The blue circles are the client nodes.

The decentralized ownership and control is an advantage and it im-
proves the resilience of the system as well as it makes it more difficult
for an attacker to take over the entire network. Therefore, by design,

28 2. Blockchain

decentralized systems resist much better to system failures and attacks.
Also, they increase the privacy of their users because no single entity
is in power to read all the traffic on the network, at least not from a
single point.

• Distributed System. A system is called distributed when a collection of
independent nodes, generally computers, act autonomously to complete
a task[22]. Normally a distributed system is intended to appear as a
single unit to the user. To accomplish this, it uses complex methods
to manage the system and to distribute tasks.

Figure 2.4: A distributed system

Ethereum and Matrix, used in this work, are both decentralized systems
by design. They were built to remove the central entity and to give the owner-
ship of the network to the people running and using the network. Ethereum,
or in general blockchains, are distributed networks and this is explained in
more detail in the section about smart contracts.

2.2 Merkle tree
Hash digits are used to provide integrity checks for transactions stored in

a block. To make the calculation of hash digits and to allow fast verification
of transactions, a blockchain uses a particular data structure called Merkle

2.2 Merkle tree 29

tree. The Merkle tree was named after Ralph Merkle who patented it in
1979[23]. It’s a binary tree where every leaf node is labeled with the hash
of the transaction data and all non-leaf nodes are labeled with the hash of
the label of its immediate children. This layout allows to determine if a leaf
node is part of a hash tree by calculating a few hashes proportional to the
logarithm of the number of nodes in the tree[24]. In a blockchain it’s vital
to verify the validity of a block or transaction, therefore the Merkle tree is
used. Figure 2.5 shows a Merkle tree with four leaf nodes and the label of
each node.

Figure 2.5: Merkle tree. A binary tree with four leaves and a depth of four.
Highlighted in yellow are the labels of each node where L1, L2, L3, L4 are
the hash of the transaction stored in the block. Each non-leaf node is labeled
with the hash of the concatenation of the labels of its direct children[25].

30 2. Blockchain

2.3 Blocks

A node listens for new transactions and adds them to the list of transac-
tions to be inserted in a new block. Every node in the system can generate
new blocks. A blockchain is a distributed system and consequently there
isn’t any central authority to control when a block is created and who can
create it. Evidently, it’s not possible to just randomly create new blocks
without the agreement of other nodes. Therefore, a blockchain puts in place
different methods for creating new blocks. This process allows autonomous
nodes to agree on something in a distributed manner. In other words, there
are different consensus mechanisms to select a new block. Some of the con-
sensus mechanisms are reported later in this chapter.
A newly created block contains the cryptographic hash of the previous block

Figure 2.6: A sequence of blocks building a chain. Each block has a reference
of the previous block via the cryptographic hash. The block on the far left
has no previous block, hence it’s the first block ever created.

(shown in figure 2.6), as well as the transactions the node decided to include
into the block, hence the transaction needs to exist before the new block is
started to be created. By appending new blocks to the chain, a single linked
list is formed, where the hash is the link. Because the system is distributed,
more than one block can be produced at the same time by different nodes.
When this happens the chain is forked, that means that it is divided into
two chains. In this way a tree-like structure, shown in figure 2.1, is formed.
Other nodes then usually continue attaching new blocks to the longest chain.

2.3 Blocks 31

Naturally blocks of shorter chains are dropped at some point and the trans-
actions stored in those blocks are lost if not included in other blocks.
If the system becomes out-of-sync it could also be possible that some nodes
continue generating blocks for a different chain, and at some later point
they overwrite the previous predominant chain. By quickly generating new
blocks it’s possible to obtain the same effect and in this way manipulate data
stored in the blockchain. This from of attack is mitigated by slowing down
the block creation as well as making block generation as expensive as possible
(computational and economically) via the consensus mechanisms.

2.3.1 Consensus mechanisms

The problem that a consensus mechanism tries to solve was formalized
long before the emerging of the first blockchain. And it was researched in
the context of distributed computing. To better visualize the issue a thought
experiment was created: The Byzantine Generals problem [26]. The prob-
lem consists of a group of army generals who command different parts of the
Byzantine army. The generals need to agree on whether to attack a city or to
retrieve, since in order to conquer the city and to win the war the full power
of the Byzantine army is needed. The only method the commanders can use
to communicate is a messenger. Unfortunately, some of the generals can be
traitors and send intentional misleading messages to other generals[21].

Let’s consider for an example three generals, shown in figure 2.7. Each
general is in control of one third of the Byzantine army. The generals are
divided into a Commander and two Lieutenant, they all are equal and have
the same power, but the Commander sends the first message. In figure
2.7a the ”Lieutenant 2” has a malicious intent, therefore they invert the
message they get from the ”Commander”. In this way the ”Lieutenant 1”
doesn’t know if they should attack the city or retreat. In figure 2.7b the
commander themself is the traitor and communicates two different messages
to the other two generals and thus ”Lieutenant 2” sends a different message

32 2. Blockchain

(a) The Lieutenant 2, in red, is a
traitor.

(b) The Commander, in red, is a
traitor.

Figure 2.7: Byzantine Generals problem. The Commander sends the first
message to the Lieutenants and then Lieutenant 2 forwards the message to
the other Lieutenant.

to the ”Lieutenant 1”. Again ”Lieutenant 1” is confused because they get
two contradicting messages.
In this thought experiment it’s only possible to gain an agreement between
the generals if more than one third of the generals are trustworthy, therefore
in the above example one traitor is enough to disrupt the entire system.
Thanks to modern cryptography it’s possible to build systems that perform
much better. Protocols that sign messages can obtain a consent even when
more than one third of the participants are traitors.
The Byzantine General Problem can be seen as an analogy to a distributed
system like the blockchain. Each general is a node and the messenger are a
communication channel between the nodes.
A consensus mechanism is a protocol executed by every node, or most nodes,
in the network to create an agreement on some decision. Blockchains can use
different consensus mechanisms to create new blocks. The most dominated
processes are Proof of Work and Proof of Stake.

2.3 Blocks 33

Figure 2.8: Proof of Work vs Proof of Stake [27]

Proof of Work

Proof of Work relies on the proof that enough computational resources
were used to obtain the proposed value. This type of consensus mechanism
is used in many cryptocurrencies and it’s the most used mechanism for the
validation of a block. In a blockchain network, different nodes compete to
solve a mathematical puzzle.
This process is called mining and the actors doing the heavy computation are
called miners. The first miner to solve the mathematical problem distributes
their block to the rest of the network and hence they confirm all transac-
tions present in the new block. The miner who created the block receives a
compensation generally in two different forms, via transaction fees paid by
the initiator of the transaction, and depending on the blockchain, also some
currency. In Bitcoin for example they receive a specific amount of bitcoins,
and this amount is constantly reduced based on the number of blocks gener-
ated overall. Therefore, at some point in the future miners will only receive
the transaction fees. The difficulty of the puzzle is adjusted to the overall
performance of the network to stabilize the time passing between each newly
created block. This consensus mechanism has a couple of downsides. If an
attacker owns more the 50% of the computing power of the system, they
can insert a malicious block[27]. Once a block is found by a miner all other

34 2. Blockchain

miner’s effort to solve the puzzle is lost. Therefore, miners often combine
their computing power into mining pools to try to solve the problem to-
gether faster than others. This can significantly reduce the decentralization
of the network.

Since solving a puzzle is computationally very expensive, the calculation

Figure 2.9: Energy consumption of the bitcoin network by country[28]

requires huge amounts of electricity to run the infrastructure. The bitcoin
network consumes 77.78 TWh in one year, which is as much electricity as the
entire country of Chile uses in one year[28]. A single transaction consumes
more electricity than an average household in the US in about 23.45 days[28].
If the network would be a country it would place itself as the 38th biggest
energy consumer in the world.

Proof of Stake

Because of the high energy consumption of Proof of Work researchers
invested a lot of time to create a different consensus mechanism that doesn’t

2.3 Blocks 35

Figure 2.10: Proof of Work vs Proof of Stake. Network dominance.[27]

waste as much resources. Obviously without weakening the security of the
system. Unlike PoW, Proof of Stake is based on the wealth of the user for
creating a new block. A user who wants to create a new block must deposit
some amount of cryptocurrencies called stake. Then a user is selected ran-
domly where users with a higher stake have an increased probability to be
selected. This works because if the user misbehaves during the consensus
process, they lose the money in the deposit. If they behave correctly, they
will receive a compensation of the work, the transaction fee of each transac-
tion included into the block. This implies that user with a bigger stake are
more trustworthy.
Naturally this creates a fundamental problem. Richer users can risk more
money and therefore also create more blocks and so get even richer. This
issue is often described with the expression ”the rich get richer”. Another
problem is also that if a single user controls more than 50% of the wealth of
the blockchain they can created malicious blocks, but this problem exists in
a similar form for Proof of Work as well.
A slightly different variant of Proof of Stake used by PeerCoin [29] adds the
factor of age. The money has an age which gets reset every time the resource
is used to validate a block. Therefore, the user must wait a specific time to
reuse the same money to create a new block.
Proof of Stake significantly reduces the energy consumption of the system

36 2. Blockchain

and hence it is much more environmentally friendly. Also, the energy con-
sumption of a single transaction is pretty much negligible. Some people argue
that Proof of Stake is a more secure mechanism then Proof of Work because
it’s more complicated to obtain a significant amount of cryptocurrency then
it is to invest to build computational powerful computers for mining new
blocks.
Ethereum is planning to perform a hard fork of the system to move from the
current system based on Proof of Work to Proof of Stake.

Delegated Proof of Stake

Delegated Proof of Stake was first introduced with the blockchain Bitshares[30].
It is similar to Proof of Stake but stakeholders don’t create blocks themself
but delegate the creation to trusted nodes. Each user obtains a specific num-
ber of votes proportional to the assets they hold, they then elect key figures
which are specially trusted users. This type of systems generally uses two
different roles: ”witnesses” and ”delegates”. However not in every imple-
mentation they are strictly different in the tasks the execute. In Bitshares
a witness performs the job of creating and validating new blocks . The del-
egate’s chore is to oversee the correct functioning of the system, and they
can adjust parameters of the system if needed. They also set the amount of
compensation a witness receives for creating new blocks. If a witness doesn’t
behave well they can be excluded from future elections or won’t get any
compensation for a block they created.

Proof of Authority

This type of consensus mechanism is similar to the Proof of Stake. The
trust isn’t based on the stake a specific user holds, but on the authority the
user has. The so-called validators, who have the power of inserting trans-
action into new blocks, aren’t elected instead they earn the position. This
system works on the principal that each user who gained the ability to vali-
date and create blocks has the desire to maintain this position and therefore

2.4 Smart contracts 37

Figure 2.11: Electing witnesses in a Delegated Proof-of-Stake network[31]

it assumes that the user acts in a manner to keep a clean reputation. Espe-
cially since their identity is well known.
This type of protocols is considered generally more efficient than other con-
sensus mechanisms but it present a significant drawback. Since only a few
nodes can create new blocks they are in control of the network. Therefore,
the system results to be less decentralized. For this reason, this type of mech-
anism is more prevalent in private blockchains. Another frequently disused
issue concerns the public identity of the validators, which makes it easier for
third parties to manipulate and corrupt the system.

2.4 Smart contracts
Smart contracts were initially proposed a long time before the emerging

of the first blockchain. They gained a lot of its popularity thanks to the
blockchain technology. Even though the name smart contract leads to the
assumption that it’s just about contracts in the conventional sense, smart

38 2. Blockchain

contracts are much more than that.
A smart contract is a computer program that is executed on a distributed
network of computers. They don’t require any external authority to estab-
lish trust among mutually distrusting nodes running the code[32]. Smart
contracts allow to define contractual clauses that make them in parts or
fully self-executing or/and self-enforcing. It’s important to implement smart
contracts by using verified design patterns to create truly trustless and self-
executing code especially since coding errors can lead to fatal damages. The
infamous DAO attack is an example of an incident where an attacker was
able to steal ∼ 50M USD because of a programming error[33]. A project
aimed at helping developers to avoid this kind of bugs is OpenZeppelin[34],
it provides tooling to create secure smart contracts, as well as a certified
process for auditing the code.
Not every blockchain incorporates this feature, but it gained a lot of atten-
tion lately and it is a much desired feature and therefore many blockchains
have an advanced infrastructure to use them.
Bitcoin implements smart contracts in a relative simple fashion and it allows
only to write code in a non-Turing complete scripting language, hence it’s
limited in its use. On the other hand, Ethereum, used in this work, has a
much more advanced system for smart contracts using a Turing-complete
language. The smart contracts in Ethereum are explained in the next chap-
ter.

Chapter 3

Ethereum

Ethereum is one of the most popular and most used blockchain-based sys-
tems. It was initially formalized by Vitalik Buterin in 2013[21]. Ethereum’s
key difference compared to Bitcoin is the focus on smart contracts. Bitcoin
uses a limited scripting language for writing smart contracts and hence it
allows only basic operations. Ethereum on the other hand uses a Turing-
complete language for smart contracts, this allows to write arbitrary pro-
grams and run them on the blockchain in a distributed fashion. Therefore,
Ethereum is much more a distributed computation platform than a cryp-
tocurrency.
Ethereum uses Ether as its integrated currency. It is used to reward users for
mining new blocks. Ethereum implements a consensus mechanism based on
the Proof-of-Work mechanism also used in Bitcoin. Ethereum has an inter-
esting approach to transaction fees. Fees are payed in the form of Gas. Gas
is fundamentally the fuel needed to execute an operation. The amount of
Gas needed for a transaction is based on how much computational, storage,
network, etc. a specific computation requires. For example, a function in
a smart contract that performs a task requires a specific amount of Gas to
execute.
A distributed app (Dapp) is a fancy way to interact with a smart contract
or with multiple contracts[35]. A Dapp is essentially a webapp which runs

39

40 3. Ethereum

its back-end logic on Ethereum. Dapps aren’t just limited to Ethereum or to
blockchain-based systems and they exist also for other distributed networks
but were mostly popularized by the blockchain technology.

3.1 Network stack

Figure 3.1: Simplified network stack of Ethereum[21]

Ethereum can be seen as a transaction-based state machine[21]. Each
transaction is stored as a change of state. By applying every transaction to
a genesis state, the initial system state, the current state of the system can
be retrieved.
Ethereum uses a peer-to-peer network as the foundation for communication
between blockchain nodes. Each Ethereum client running on a computer
forms a node of the network. One physical machine can run multiple clients
and therefore create multiple nodes. Each node synchronizes themself with
other nodes over a peer-to-peer network. In this way a node creates their
own copy of the blockchain. Normally an Ethereum client provides a remote
procedure call (RPC) API, that allows a user to interact with the node.
Ethereum uses a consensus mechanism based on the protocol Greedy Heaviest

3.2 Currency 41

Observed Subtree (GHOST)[36]. It was created by Zohar and Sompolinsky
in 2013. Bitcoin gives the longest chain the precedence. Ethereum on the
other side uses the most expensive, in sense of computational power, as the
dominant chain.
An important concept of Ethereum are accounts. The overall system state is
defined by the account state. Each operation between accounts modify the
account state. An account is identified via a public hash with length 160 bit
(20 bytes) called address.
There exist different Ethereum networks. The network types are generally
divided into public, private and test networks.

3.2 Currency

Name Value
wei 1 wei

kwei, ada, femtoether 103 wei
mwei, babbage, picoether 106 wei

gwei, shannon, nanoether, nano 109 wei
szabo, microether, micro 1012 wei
finney, milliether, milli 1015 wei

ether 1018 wei
kether, grand, einstein 1021 wei

mether 1024 wei
gether 1027 wei
tether 1030 wei

Table 3.1: The Ether denominations[37]

Ethereum uses Ether as its currency. The table 3.1 shows a list of the
denominations of the different unites used in Ethereum. Users receive Ether
as reward for the computational power they invest for mining new blocks.

42 3. Ethereum

To execute a smart contract a user spends Ether to buy Gas. Gas can be
considered as the fuel needed to process a request. The required Gas for an
execution is estimated based on storage and network requirements.
The transaction fee for an operation is calculated via this formula GasPrice∗
usedGas. The miner who includes the transaction in a block receives the
fee as compensation. In the previous formula the GasPrice is set by the
originator of the transaction and is the amount the user likes to spend for
an operation. The usedGas is the actual amount of computation needed to
execute the operation. The originator sets the Gas limit when they initiated
the transaction. If the execution of the transaction requires more than the
Gas limit, then the execution is stopped, and state is rolled back to the state
it was before staring the transaction.

3.3 Smart Contracts

Smart contracts in Ethereum are written in a Turing-complete program-
ming language. A Turing-complete programming language allows to simulate
a Turing machine. In other words, it allows to write arbitrary programs and
to build new instructions based on the available instruction set. This makes
Ethereum a platform to execute any code in a distributed way.

3.3.1 Ethereum virtual machine (EVM)

The Ethereum virtual machine is used to execute the code of a smart con-
tract. The EVM is a simple stack-based-execution machine, which modifies
the state of the system by executing a smart contract[21]. A smart contract
is translated by compiling into bytecode which then is interpreted by the
virtual machine. Ethereum’s virtual machine is a Turing-complete machine,
but an execution is limited by the Gas consumed. The Gas limitation is used
to eliminate the problem of infinite loops which could block the entire net-
work. The EVM creates a fully isolated and sandboxed runtime environment
which doesn’t allow any access to external resources like the network or the

3.3 Smart Contracts 43

host filesystem[21]. Each operation performed by the EVM has a specific
Gas cost. For example, the calculation of a SHA3 hash costs 30 Gas, and
the creation of a new contract costs 53000 Gas[21].

3.3.2 Solidity

There are multiple languages a user can choose to implement a smart
contract, but the most used programming language is Solidity. Solidity is
an object-oriented, high-level language [38]. It was built specifically for the
purpose of implementing smart contracts. Solidity is a statically typed pro-
gramming language. The language was inspired by languages like C++,
Python and JavaScript and therefore includes many features known from
other popular languages. Solidity is compiled to bytecode and is then exe-
cuted by the EVM.
The following code example is a smart contract written in Solidity. The first
line defines the minimum version of Solidity. Then the name of the contract
is defined, which contains three variables and two functions. The function
set_secret set the variable secret of type bytes32 to the value provided by
the caller of the function. The function also sets the variable secret_is_set
of type bool to true. The require keyword is used to state the requirement
for the execution of the function, when the statement isn’t satisfied no op-
eration is executed. Thanks to the require the secret can be set only once.
The second function get_secret returns the secret to the caller, but only if
the sender is the owner that was set previously.

1 pragma solidity ^0.5.0;
2 contract SampleContract {
3 bytes32 secret;
4 address owner;
5 bool secret_is_set;
6

7 function set_secret(byte32 _secret) public {
8 require(secret_is_set == false);

44 3. Ethereum

9 secret = _secret;
10 secret_is_set = true;
11 owner = msg.sender;
12 }
13

14 function get_secret() public view returns (byte32) {
15 require(msg.sender == owner && secret_is_set ==

true);
16 return secret;
17 }
18 }

3.4 Ethereum clients

Ethereum has several different clients that allow a user to create a node,
hence create a blockchain network. The client software contains an interface
that allows to interact with the node and the network.
The best known Ethereum clients are Geth and OpenEthereum (Parity).
Geth is written in the programming language Golang. Geth is sometimes
used as the underlying client for other nodes applications. For example, the
Ethereum client Mist, a user-friendly Ethereum client[21], uses Geth under
the hood.
OpenEhtereum is another client written in the programming language Rust.
Geth and OpenEthereum expose both a Remote Procedure Call (RPC) API,
which allows to interact with the Ethereum node.

3.4.1 OpenEthereum (Parity)

OpenEthereum is one of the fastest and most advanced clients for Ethereum.
It recently changed its name from Parity to OpenEthereum, therefore in
this document the names may be used interchangeably. The entire code-

3.4 Ethereum clients 45

Figure 3.2: OpenEthereum’s logo (Parity’s logo)[3].

base is licensed under the GPLv3, and hence it is free and open source
software[3]. OpenEthereum is built with the objective to create a secure,
fast, and lightweight Ethereum client, therefore it uses the emerging pro-
gramming language Rust. Rust comes with many safety guarantees which
are mission critical for a secure Ethereum client.
Key features of OpenEthereum include[3]:

• OpenEthereum is built to be customizable, therefore it focuses on a
clean and modular codebase.

• The client has an advanced command line interface.

• Thanks to a feature called Warp Sync the synchronization time is sig-
nificantly reduced.

OpenEthereum has some technologies built directly into the client that other
clients don’t incorporate. This work is built on top of OpenEthereum’s Secret
Store core technology[4].

3.4.2 Secret Store

The Secret Store is a technology integrated into OpenEthereum that al-
lows to securely store encryption keys on the Ethereum blockchain. This

46 3. Ethereum

Figure 3.3: A Secret Store setup composed of three nodes.

feature can be used to encrypt a document as well as to sign a document.
Since the cryptographic keys are distributed over multiple shares which are
stored across multiple nodes a distributed key storage is created.
The Secret Store implements a public-key cryptosystem based on elliptic
curve cryptography. The elliptic curve cryptography was used to minimize
the size of the cryptographic keys without compromising security[4]. The
key generation and the key storage was implemented based on the paper
”ECDKG: A Distributed Key Generation Protocol Based on Elliptic Curve
Discrete Logarithm1”[4]. Additional, the Elliptic Curve Digital Signature
Algorithm (ECDSA) used to sign documents was implemented based on the
paper ”A robust threshold elliptic curve digital signature providing a new
verifiable secret sharing scheme2”[4].
The Secret Store uses a dedicated interface to interact with other Ethereum

1ECDKG: A Distributed Key Generation Protocol Based on Elliptic Curve Discrete
Logarithm: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.4128rank=1

2A robust threshold elliptic curve digital signature providing a new verifiable secret
sharing scheme: https://ieeexplore.ieee.org/document/1562272

3.4 Ethereum clients 47

nodes, hence each node needs to run OpenEthereum and it is required to
enable the Secret Store feature.
To control access permission to stored cryptographic keys the Secret Store
uses a smart contract that, thanks to Solidity, allows to create a powerful
permission system.
The user of the Secret Store can interact with it via a HTTP interface, which
allows to generate the public key as well as the private key for the encryption
of a document.
In this system the private key is never distributed to all parties and therefore
it remains unknown to each single node, but each node receives a share of
the private key, and by combining the shares the key can be retrieved. Same
as for all public-key encryption systems, the public key can be distributed
without limitations and restrictions. The access to the private key is gained
when a threshold number of nodes give permission to access it. This forms
a (t, n)-threshold system, where t is the number of shares required to access
the secret, in this case the private key and n is the total number of nodes
forming the Secret Store. In addition, also t+ 1 nodes need to agree on the
permissioning contract state[4].

Chapter 4

Matrix

Matrix is an open standard for real-time communication over IP[39]. Its
main use case is instant messaging, but the protocol is intended to be usable
for any type of real-time communication. It can also be used to drive Internet
of Things, VoIP/WebRTC signalling and many other real-time applications,
as long as the message can be expressed as JSON.
Matrix being an open standard means that the entire API is public and
well documented1. The open nature of the protocol allows it to be easily
extensible. Matrix was created with the ability to integrate with other com-
munication systems, which is one of the core features of the protocol. Matrix
uses HTTP2 as the transport protocol and JSON3 as message format[40].
In Matrix, an instant messaging conversation takes the form of a virtual
room, each message sent to a room is represented as an event. Not only
messages are considered to be events, but any other user change is also sent
in the form of an event.
The entire system was designed to be decentralized and to operate with-
out a central point. Each user connects to a server, called ”homeserver”,
each server can be home to multiple users, but each user could also operate
their own server. A user’s server communicates with other homeservers to

1Matrix Specification: https://matrix.org/docs/spec
2HTTP: https://www.w3.org/Protocols
3JSON: https://json.org

49

50 4. Matrix

synchronize messages in a room.

4.1 Architecture

Matrix is basically a decentralized conversation store[1]. The protocol
has no single point of control or failure, if a room is distributed over multiple
servers. A room can also have no distributed copies when all participants
are on the same server.
In order to participate in a conversation a user needs to create an account on
a server called their homeserver. The user is bound to the specific server and
the server has total self-sovereignty over its users’ data. A user can choose
their homeserver from a wide range of different servers, most of them free of
charge, but they can also run their own server and add it to the federated
network.
The homeserver stores and provides account information and keeps the room
history of rooms the user is a member of. A homeserver synchronizes the
state and message history of a room with other homeservers, but only with
servers which have a user participating in the room. In this sense Matrix
works similarly to how commits are replicated and distributed over different
git clones[1]. Whenever a user’s homeserver goes offline, the communication
for the users on that specific server is interrupted but the rest of the network
won’t be affected. Once the server turns back online it will synchronize
its room state and message history, fetching it from other homeservers who
participated in the conversation. In the same way as it’s possible that a
server goes offline, it’s also possible that a server goes out of sync with other
homeservers. A possible reason for this can be that there are too many users
on the machine, or a slow internet connection. Matrix was designed to resolve
this type of issue.

The figures 4.1 illustrate how an event (e.g. a message) flows from one
user, through the matrix network, to a different user connected to a different

4.1 Architecture 51

(a) No events

(b) Alice created an
event, but didn’t sent it
yet

(c) Alice has sent the
event to their home-
server

(d) The event was prop-
agated to Bob’s home-
server

(e) Bob receives the mes-
sage from his homeserver

Figure 4.1: Matrix network with 3 homeservers: A, B and C, and two clients:
Alice connected to A and Bob connected to B. The black circle is a message
event.

52 4. Matrix

homeserver. The shown network contains three homeservers, A, B and C.
The server A and B, have one user each, Alice and Bob respectively. For
simplicity this example considers only one event and only one room. At first,
figure a), there are no events. In figure b) Alice generates an event, but
didn’t send it to their homeserver yet. In figure c) the event is sent to server
A, then in figure d) the event is propagated to the server B. Lastly in figure
e) the user Bob receives the event.
Observing the process, it’s possible to see that server C isn’t involved at all
in the conversation, since it doesn’t have any user participating.

4.1.1 Users and Identity

A user is associated to a unique user ID, namespaced with the domain of
the homeserver and is in form of @localpart:domain. A user ID can also be
linked to a third party identifier, e.g. an e-mail address or phone number.
The user ID is often called simply Matrix ID.

4.1.2 Events

Matrix packs all data exchanged over Matrix into an ”event”[41]. An
event normally represents one user action for example sending a message.
Each event has a associated type, each type has to have a globally unique
name. For example a message send to a room has type m.room.message. Not
only data explicitly send by the user are expressed as a event but also room
state changes are expressed the same way.
All events send to a room are stored in a directed acyclic graph (DAG) called
”event graph”. The chronological ordering of events in a room is given by
the partial ordering of the DAG. Each event can have multiple successors,
because multiple servesr can race against each other to insert a new event
in the room history. If the event doesn’t have any parent it means that the
event doesn’t have any previous events known to the homeserver.

4.1 Architecture 53

The following JSON is a message send to a room:

1 {
2 "type": "m.room.message",
3 "sender": "@jsparber:gnome.org",
4 "content": {
5 "msgtype": "m.text",
6 "body": "Hi all"
7 },
8 "origin_server_ts": 1585839155013,
9 "event_id": "$DCsyYK3E9fK6QFHooj66GtX -nDe8hWGo3RYu2t

4MMSI",
10 "room_id": "!sYjxRUYKlgujLcpRun:gnome.org"
11 }

This object contains information about the sender, the type of message, the
ID of the room it was sent to and an identification number for the event
itself.

4.1.3 Rooms

A room is an abstract concept where users can send and receive events[41].
Each participant in a room with sufficient access create or read events. A
room is a unique identifier in the form of !opaque_id:domain. The Room ID
contains a domain which is only used for namespacing, but it doesn’t mean
that the room is stored only on the specific domain. Room events are split
into two speperate groups: message events and state events.

Message events

Message events are generally sent by the user directly. They can be, for
example, an instant message or a file transfer. These types of event are part
of the room history.

54 4. Matrix

Room state events

State events describe updates to persistent information associated with
a room, the state of the room. Possible properties include the room’s name,
topic, or membership. The state of a room is calculated by considering all
preceding state events, which results in the room state at a specific moment
in time.
A room can also have multiple aliases for identification. A Room Alias looks
like room_alias:domain. The room alias makes it easier for users to find the
room. This is especially important for public rooms where anybody can join.

4.1.4 Devices

The Matrix protocol has a special meaning for devices[41]. A device
doesn’t represent one physical device, but each client used. For example, a
user could have multiple clients on the same physical device. Devices are
mostly used to identify different clients and to generate client specific keys
for end to end encryption. They are also useful to give users more control
over connected sessions and logged-in clients.

4.2 End-to-end encryption

Matrix has built-in end-to-end encryption[16]. The encryption used in
Matrix is based on the Olm and Megolm cryptographic ratchets[16]. Olm is
an implementation of the double cryptographic ratchet based on the double
ratchet specification4. The Double Ratchet Algorithm was initially created
for Signal5 (a fully encrypted instant messenger) but today it’s used by other
applications as well. Olm doesn’t work very well to encrypt messages for
large groups, which is why Matrix uses Megolm to mitigate these issues.
Megolm is an AES-based cryptographic ratchet[42]. It still requires a differ-

4The Double Ratchet Algorithm: https://signal.org/docs/specifications/doubleratchet
5Signal: https://signal.org

4.2 End-to-end encryption 55

ent encryption system, e.g. Olm, to setup some keys to work.
Currently the e2e encryption is still in beta. Therefore it’s not enabled for
all rooms by default, but it can be enabled on a per-room basis by users
who have the necessary room permissions to do so. Once the encryption is
enabled for a room it can’t be disabled again. It will be enabled by default
for all private rooms once it’s out of beta. Public rooms on the other hand,
have much less reason to be encrypted since anybody can join at any given
point of time, therefore they probably will never be encrypted by default.

Device verification

Each of a Matrix user’s devices is identified by a device-specific crypto-
graphic key. A user has to verify another user’s device by comparing the
device-specific keys with the keys obtained from the other user. The ex-
change of the device keys can be done via any communication channel, as
long as it allows a user to identify the other user. Possible channels include
direct human interaction, or a voice/video call. It doesn’t need to be an
encrypted channel, because even when the communication is intercepted a
attacker, the attacker won’t be able to read any communication encrypted
later. Since the encryption system is still in beta, the device verification will
probably be subject to future changes[2].

Message encryption

Like everything else in Matrix, encrypted messages are also sent via
events. There exists a special event type for encrypted messages called
m.room.encrypted. Encrypted events contain two main properties: algorithm
and ciphertext. The property algorithm identifies the encryption algorithm
used to encrypt the ciphertext included in the event. The chipertext is the
encrypted message event. The event can also include additional properties
depending on the encryption algorithm used.

The following JSON shows an m.room.encrypted event:

56 4. Matrix

1 {
2 "type": "m.room.encrypted",
3 "sender": "@jsparber:gnome.org",
4 "content": {
5 "algorithm": "m.megolm.v1.aes -sha2",
6 "sender_key": "CdRdP0pWb3xiD+UUrAF/m0TSS8G5

gQWioOCIWgVJEVc",
7 "ciphertext": "AwgAEoABWZ4 s9qk6bVl4Ih7h09KkmkI44

pSn+b//8xYJP1CFO62R+mvMzt3p8sBh4+isTV1Ge22AC3/
pBRtvbyDiS3CbulwxD9pHiEj9WfpWbXorGtoD+xQNOy96
jHhIpWkgx+hbvgQYZTXG6jLCZVqpmyNGcCQl4gFhN5YGqL6
G/aJYPXm1x0kBT7JlNTuO0S3HWBCZXoYbTLG++rr4
DDverYDac+FQznosxFuukff0rfxZDlL8fseofY5aJw8
vtXJdg9IACS13fuLBdg4",

8 "session_id": "LivTnCKQozahn5ntHwd9W3bSBH7
XhlLXeajfjf940vE",

9 "device_id": "JZGYMVYTNZ"
10 },
11 "origin_server_ts": 1585839197008,
12 "event_id": "$AcgbVFcoICgYgO_iz3tlWTJnID5QvgWrrnIwH2

lQuv8",
13 "room_id": "!sYjxRUYKlgujLcpRun:gnome.org"
14 }

The following JSON is the decrypted payload of the previous JSON of a
m.room.encrypted event.

1 {
2 "room_id": "!sYjxRUYKlgujLcpRun:gnome.org",
3 "type": "m.room.message",
4 "content": {
5 "msgtype": "m.text",

4.2 End-to-end encryption 57

6 "body": "Hi all"
7 }
8 }

Chapter 5

Proposed design

An end-to-end encryption system needss to address a series of problems in
order to be functional and secure. The encountered issues aren’t purely tech-
nical, because the system needs to be simple and usable. The process needs
to be easy enough that even people without any technical knowledge can use
it, of course without compromising their security. To include non-technical
users, the proposed end-to-end encryption system was designed with them
in mind and the system was built to be as simple as possible to use.
The proposed system uses Matrix for the communication between users and
implements message encryption via Ethereum.
This section discusses the design of the system used to encrypt and decrypt
messages using OpenEthereum’s Secret Store, and it describes possible so-
lutions for key sharing and user verification. This chapter also explains the
smart contract used as permissioning contract for the Secret Store.

The proposed system based on the Secret Store has the advantage that
cryptographic keys are stored on the blockchain and therefore no backups
of the keys are required because the blockchain already stores them in a
distributed and redundant manner. Thanks to the smart contract used as
permissioning contract the system can be extended with an advanced access
control process to control the access to the conversation. It also allows to
giving or revoking access to a message at a later point.

59

60 5. Proposed design

Figure 5.1: Abstract process of sending a message between two users: Alice
and Bob.

In addition to the possible advanced permissioning contract, this system cre-
ates an abstraction from the cryptographic primitives in use as well as from
the Secret Store itself, thus the system allows a developer to implement end-
to-end encryption without much knowledge about cryptography nor about
the blockchain technology. The created abstraction makes a clear distinction
between the transport protocol used to send a message and the encryption.
This property allows it to be reused for many different transport protocols,
even those not designed for instant messaging or real-time communication.

5.1 Ethereum

The created system uses an Ethereum network to store the public and
private keys. More specifically the keys are stored using the core technology
of OpenEthereum called Secret Store.
The Secret Store is composed of a number of Ethereum nodes where the
number of nodes is the upper limit of the usable threshold. The threshold
is the number of nodes that need to agree on the permissioning contract
state to grant permission to the private keys the allow an user to decrypt a
message.
Each user who wants to use this end-to-end encryption system needs access
to a OpenEthereum node and is required to create an Ethereum account.
This Ethereum node should ideally run on the user’s machine together with

5.1 Ethereum 61

the Matrix client. This node could be part of the secret store but it’s not a
hard requirement for the system to function. Of course, the process of setting
up the Ethereum node and the account creation can be automated.

5.1.1 Permissioning contract

The secret store uses a smart contract to store the access permissions.
It is written in Solidity which then is compiled into machine code that runs
on the Ethereum virtual machine. The contract consists of two core pieces.

Figure 5.2: Interaction with the permissioning contract.

First, the creator of a message needs to set a list of users that are allowed to
gain access to the decryption keys. Then the Secret Store can use the smart
contract to check if a user is permitted to access them.
The secret store calls a function checkPermissions() to check the permissions.
If this function returns true, the user is granted access to the stored key.
Otherwise the access is denied. A certain number of nodes need to agree on
the contract’s state in order for this to work. The required number of nodes
is set when a message is encrypted via a threshold property.
The smart contract was designed to be efficient, by reducing the number of
calls required and by using memory efficient data structures, but to be still
easy to read and to understand. Possible modifications and improvements
are discussed later in this chapter.

62 5. Proposed design

Storage

To store information, the smart contract uses a special data structure
called mapping. A mapping is a data type that associates a key of a certain
data type to a value of any data type. This creates an optimal structure to
link an input value to an output value. For example an account address to
a message id. A feature of this data type is that any possible key is always
associated with a value. If the value for a key wasn’t set manually the value is
automatically created and initialized with the default value of the data type
when it is first accessed. This feature can be an advantage but can also be
a disadvantage because it doesn’t allow iteration over the entire set, at least
not without exploring all possible keys. This is highly inefficient. However,
since looping over a big dataset isn’t needed in this case, this isn’t a problem
here. The proposed smart contract makes heavy use of mapping, because of
its space efficiency.

The permissioning contract uses a mapping from message ids to a struct

Figure 5.3: Layout of memory used in the permissioning contract.

called ”Access”. The struct Access contains three properties. The first prop-
erty is the address of the owner, the address of the account which created the
message. The second is a bool value which is set to true when the message
is actually created. This property is required because mappings are assumed
to always exist, and therefore any message id, even those not created by
anyone, does exist. The property will be set to true only when the message

5.1 Ethereum 63

is actually created by a user. The last property in the struct is a mapping
of account addresses to a bool value called ”allowed”. The mapping from an
address is set to true only when the owner of the message allows an user with
the specific address to decrypt the message. Thankfully the data type bool
uses as default value false.

Check permission

The method used by the Secret Store to check if an user is allowed to
access the decryption keys called checkPermissions() requires two arguments,
the address of user trying to decrypt a message and the message id (or often
also called document id). The message id needs to be the same that was
specified during encryption and creation of the message. The procedure
returns a bool. It returns true if the user is the owner of the message, to
guarantee that the owner always has access to their own messages, or if the
creator gave the user previously permission to access the message.

Set permission

In addition to reading of the permissions from the smart contract, the
contract also requires a method to manipulate the stored data. The contract
uses a public function to give the creator of a new message the possibility to
specify the access permissions.
The method named allow_access() is used to set the correct access permis-
sions for a new message. It can also be used to update the permission for
already existing message. The function takes two arguments. It requires the
message id and a list of user addresses. The execution of the function is only
allowed if the message wasn’t created already or if the caller is the owner of
the message. If it’s a new message then the flag created is set to true and
the sender is set as the owner. If the caller isn’t the owner of the message
then the function call is blocked and no memory is altered. Finally if the
execution wasn’t blocked so fare the list of user addresses is used to set the
values in the allowed mapping to true for addresses in the list.

64 5. Proposed design

Full smart contract

This is the full smart contract written in Solidity which is used by the
system.

1 pragma solidity ^0.5.0;
2

3 contract SSPermissions {
4 struct Access {
5 address owner;
6 bool created;
7 mapping (address => bool) allowed;
8 }
9

10 // The main storage for messages , a mapping from
document id to the struct Access

11 mapping (bytes32 => Access) docs;
12

13 // Function to give other users access to the
decryption keys for a specific doccument

14 function allow_access(bytes32 id, address[] calldata
users) external {

15 // If the requirement isn 't satisfied the function
call fails with an error

16 require(
17 msg.sender == docs[id].owner || docs[id].

created == false,
18 "Sender not authorized."
19);
20

21 // Set sender to be the owner if it's a new
document

22 if (docs[id].created == false) docs[id].owner =

5.1 Ethereum 65

msg.sender;
23

24 // Set the right access permission for users
25 for (uint i = 0; i < users.length; i++) {
26 docs[id].allowed[users[i]] = true;
27 }
28 }
29

30 // Function used by the Secret Store to check
permission

31 function checkPermissions(address user, bytes32 id)
public view returns (bool) {

32 if (docs[id].allowed[user] == true || docs[id].
owner == user) return true;

33 return false;
34 }
35 }

Possible improvements

There are few possible improvements that could be made to increase the
performance and also some features which where not included in the current
version of the smart contract.
The smart contract for now doesn’t allow to revoke permission, so if a user
account gets compromised the owner of the message has no possibility to
remove the user form the list of allowed users. This feature could be added
via a function that takes a list of account addresses which is used to set the
allowed property to false.
A achievable optimization to increase the performance of the smart contract
could be to remove the loop in the function allow_access(). This function
obviously is linear and it’s time consumption is proportional to the number

66 5. Proposed design

of users allowed to read a message. A possible solution to this issue could
be to create groups of users which then can be allowed or denied in bulk. A
new group of users could be created for each conversation so that the creator
of a message only needs to give permission to a single entity. Each group
could be represented by a different smart contract, that then can be used to
reference a specific group. A system created in this way would be similar to
the user permissions on an Unix-like operating system (e.g. GUN/Linux).

5.2 Matrix

Matrix’s openness allows it to be easily extended and it gives the pos-
sibility to add features through custom events. This is one of the reasons
why Matrix was selected for this work. It builds the foundation for sending
messages. This projected doesn’t require any changes to the Matrix network
nor to the software running on the server. The client software, on the other
hand, needs to be modified to handle the additional events used for this
encryption system. The client will also require future changes, to give an
user control over addition preferences and to provide feedback related to the
security system.
Matrix uses JSON as format for messages and events therefore also the mod-
ified events use the same format. The end-to-end encryption system consists
of two phases: The initial setup for a room and the ongoing encryption of
messages.

Initial room setup

Matrix by default doesn’t enable end-to-end encryption for all rooms.
Each room has a room state which can be modified by sending room state
events. The room state is essentially the set of preference and settings for a
room. To enable end-to-end encryption the event m.room.encryption needs
to be send. This event defines the encryption method used. The event
m.room.encryption contains the following values:

5.2 Matrix 67

• algorithm. The algorithm used in this room. The default matrix end-
to-end encryption allows two different algorithm. The proposed system
adds an additional algorithm called ”secretstore.v1”.

• rotation_period_ms. This is the time after which the keys are renewed.
Since in the proposed system new keys are generated every time a
message is send this property isn’t used.

• rotation_period_msgs. This is the number of message send with using
the same session keys, once the limit is reached new keys are generated.
This isn’t used in the proposed system for the same reason as the
previous property.

An example of the state event send to enable encryption via the Secret
Store is the following:

1 {
2 "type": "m.room.encryption",
3 "room_id": "!NAvrpHYMPTwEPpROkQ:gnome.org",
4 "sender": "@jsparber:gnome.org",
5 "content": {
6 "algorithm": "secretstore.v1"
7 },
8 "origin_server_ts": 1585842810292,
9 "unsigned": {

10 "age": 5522477762
11 },
12 "event_id": "$IjGV4bhtqkNCubZHneX9_IqPsOU -n21

UcKmCVojaY00",
13 "user_id": "@jsparber:gnome.org",
14 "age": 5522477762
15 }

Every property other then the content property are metadata including the
sender and the room.

68 5. Proposed design

Message encryption

Matrix uses a special message event called m.room.encrypted to send en-
crypted messages. This event is essentially a wrapper around other events
that are encrypted and attached as payload. The proposed design uses the
same event as the default end-to-end encryption process.
An encrypted event has the following properties:

• algorithm. This is the algorithm used to encrypted this event. The list
of algorithms was extended with the new method based on the Secret
Store. The added algorithm is named ”secretstore.v1”.

• ciphertext. This is the payload of the event. It contains the encrypted
event.

• sender_key. The key of the sender. This isn’t used by the proposed
design.

• device_id. A key identifying the device used to send the event. This
event isn’t used in the proposed design.

• session_id. The id of the session in uses, this is only used in Megolm
and isn’t used in the proposed design.

The following example shows the JSON of a message send to a room
where messages are encrypted via the new system:

1 {
2 "type": "m.room.encrypted",
3 "room_id": "!NAvrpHYMPTwEPpROkQ:gnome.org",
4 "sender": "@jsparber:gnome.org",
5 "content": {
6 "algorithm": "secretstore.v1",
7 "ciphertext": "AwgAEnACgAkLmt6qF84IK++J7UDH2Za1

YVchHyprqTqsg"
8 },

5.3 Identity verification 69

9 "origin_server_ts": 1585844364450,
10 "unsigned": {
11 "age": 5520923604
12 },
13 "event_id": "$4Z3BhTSQ5w3QmLgzKOKn3tbVzklOuq1

ofpmhy_U7oME",
14 "user_id": "@jsparber:gnome.org",
15 "age": 5520923604
16 }

The property ciphertext contains the payload of the message. All properties
except the content aren’t specific to the encrypted event and are used also
for other events.

The decrypted ciphertext looks like the following JSON:

1 {
2 "type": "m.room.message",
3 "content": {
4 "msgtype": "m.text",
5 "body": "Hello World"
6 }
7 }

5.3 Identity verification

So far only message encryption was discussed. There is a second part to a
working end-to-end encryption system. The identity verification can be seen
as the process of verifying that the other party is actually the person or ma-
chine we want to talk to. Without verification there can’t be any guarantee
about the security of the system, because it would be easy for any attacker
to impersonate a different user. A possible and simple attack would be a
man-in-the-middle attack, where an advisory forges the identity of the com-

70 5. Proposed design

municating users and places themself in the middle of the communication.
Identity verification is often also refereed to key verification since a crypto-
graphic key is used to identify an user.
Overall there are basically two approaches for key verification. A public list
linking encryption keys to users identities (for example Matrix user ids). This
method doesn’t require much user interaction and most of the verification can
be automated. This needs some sort of mechanism which allows the owner to
testify for it’s identity. A good example for this method is KeyBase1, which
links social media identities to encryption keys. KeyBase is mostly know for
it’s support of PGP keys2 but it support also other encryption systems.
The other mechanism is to give the user the ability to check the key manu-
ally at the beginning of a conversation. This gives the sending party much
more control about who they trust. Matrix uses this system for key and de-
vice verification. The planned way to verify the user is based on the second
version described previously, but nothing would prevent a mixed system of
being used.
The default encryption system used by Matrix, based on the double ratchet
algorithm, allows an user to manually verify the device key to validate the
other user’s identity.
In the proposed system all encryption keys are stored securely on in the Se-
cret Store, therefore the user doesn’t have direct access to them. This system
doesn’t need key verification because the access to a key is strictly linked to a
user via a the permissioning contract. However the user still needs to verify
the Ethereum Account to make sure that the conversation is made with the
correct party.
Some of the possible solutions to the previously described problem are:

1Keybase: https://keybase.io
2OpenPGP: https://www.openpgp.org/

5.3 Identity verification 71

Manual user verification

A different approach is to use a similar system to what Matrix already
uses. It would be required to be modified so that it allows users to verify
Ethereum accounts instead of cryptografic keys. This system requires user
interaction to verify the identity.

Public list via smart contract

It’s possible to use the blockchain to store a list of Matrix ids with the
respective Ethereum account. To lookup an an account’s address a call to a
smart contract is made. The following contract uses a mapping to link the
hash of the username to the address of the Ethereum Account.

1 pragma solidity ^0.5.0;
2

3 contract AddressSharing {
4 struct User {
5 address ethaddr;
6 bool created;
7 }
8

9 mapping (byte32 => User) users;
10

11 // Takes the username as a 32byte hash
12 function set_user(byte32 username) public {
13 require(
14 users[username].created == false,
15 "User already registered."
16);
17 users[username].ethaddr = msg.sender;
18 users[username].created = true;
19 }

72 5. Proposed design

20

21 // Takes the username as a 32byte hash
22 function get_user(byte32 username) public view

returns (address) {
23 return users[username];
24 }
25 }

The advantage of this system is that when the correct information is stored
it doesn’t require any user interaction and the identity is guaranteed by the
blockchain. This contract has the obvious drawback that whoever set the
address for a Matrix ID first obtains the ownership of the Matrix id. Since a
smart contract can’t make requests to external resources it’s difficult to cre-
ate a system which allows the smart contract to verify the actual ownership
of the Matrix ID. Other systems do this by require a token from the user to
confirm that they have access to the account. The server generates a token
and it’s send directly to the user’s account. But since a smart contract can’t
directly interact with the outside world a different process is needed.
A possible solution to this is to return a token when the user sets the
Ethereum account address in the smart contract. The token then is commu-
nicated to the other communication parties who than can manually confirm
the identity. This creates a mix of the manual and the automatic confir-
mation system. To additionally confirm the public list stored in the smart
contract a function to confirm the identity by other users could be added.

Chapter 6

Reference Implementation

This section describes the reference implementation created to test the
proposed design. The same software was also used to analyze the performance
of the newly created system. The reference implementation was written in
Rust to be coherent with the language used by OpenEthereum (the Ethereum
client used) and Fractal (the Matrix client extended in this work).
The idea behind the design of the project was to have it work as a module

Figure 6.1: Overview of different modules in the reference application.

73

74 6. Reference Implementation

which can be integrated into other clients or even be used for end-to-end
encryption of protocols other than Matrix. Therefore, the module is built
as a library that handles all interaction with the Secret Store, including
the Ethereum network and the smart contracts involved in the process of
encryption and decryption of messages. The library also exposes a simple
Application Protocol Interface (API) which allows a user of the library to
encrypt and decrypt messages by calling only a few functions. This way the
module can be used to integrate end-to-end encryption based on the Secret
Store technology into any other application. Because it is written in Rust, the
library even exposes a C API and can be easily integrated into applications
written in other programming languages. The created library is published
under the GNU General Public License (GPL-3.0-or-later) and the source
code can be found at https://github.com/jsparber/e2e-secretstore.

6.1 Technical background

This section describes some of the technologies used to create the reference
implementation.

6.1.1 Rust

Rust is a modern programming language mainly developed by Mozilla.
Rust is a fast and memory efficient language because it does not require
any runtime, and does not use a garbage collector. It was built to power
performance-critical services and to be easily integrated with existing code-
bases in other languages[43]. With its small overhead it is perfect for em-
bedded devices. The type system and ownership model built into Rust offers
memory-safety and thready-safety guarantees which significantly reduces the
number of typical bugs related to memory management and multithreading.
The language also comes with well written documentation and the compiler
has a user friendly interface with useful error messages and suggestions on
resolving errors.

6.1 Technical background 75

Rust has support for futures, which is a method to perform non-blocking
asynchronous function calls. A future is basically a data structure that does
not immediately return a result but a sort of pointer to the result. which
will be yielded at some later point once the asynchronous task is completed.
The reference implementation makes heavy use of this feature through the
library tokio1.

6.1.2 JavaScript Object Notation

JavaScript Object Notation, or much better known as JSON, is a lightweight
data-interchange format[44]. JSON is based on the JavaScript Program-
ming Language Standard ECMA-262 3rd Edition - December 1999[44]. Even
though it has JavaScript in its name the data structure is fully language in-
dependent. However, it contains many conventions from programming lan-
guages of the C-family (e.g. C, C++). The format is text based with a
simple structure, which allows it to be easily readable, and manipulated and
created by humans. By design, it’s also easy to be parsed and generated
by computers. For its nature JSON is an ideal format for transferring data
between different programming languages and computer systems.
JSON is built on two different virtual structures. A list of key-value pairs
called Object, and an ordered list of values called an Array. These structures
are common in most modern programming languages, but they often have
different names. Thanks to this it’s simple to implement support for JSON
in many different languages.
An example of a JSON is the following snippet, it contains an object with a
key ”outer key” and a second key ”array”. The first key has another object
as value, which itself has two key-value pairs. The key ”array” has an array
as its value, with the numbers from 1 to 10.

1 {
2 "outer key": {

1Tokio: https://tokio.rs/

76 6. Reference Implementation

3 "inner key": "A random string",
4 "data": "Some data"
5 }
6 "array": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
7 }

6.1.3 JSON-RPC

A remote procedure call (RPC) in distributed computing is used to exe-
cute a procedure, in most cases located on a remote computer, though this
does not necessarily have to be the case. A remote procedure call is normally
implemented so that it can be used in a similar way as local methods or func-
tions. It is also possible to call a procedure on the same physical machine,
therefore it can be used for inter-process communication. RPC abstracts
many implementation details, like encoding and transport[45].
JSON-RPC is a remote procedure call protocol[46]. It is stateless and lightweight,
and uses JSON as encoding. Like other RPC protocols JSON-RPC can have
a wide range of transport protocols. In OpenEthereum it uses HTTP as a
transport protocol[46].
Web3-rs is a library which allows to directly make RPC calls from Rust code.
There are also other implementations of web3 for other languages to simplify
the interaction with an Ethereum node.

6.1.4 Fractal

Fractal2 is an Open Source Matrix client written in Rust. It’s built by
using the GTK graphical interface toolkit and it is part of the GNOME3

project. The client is one of the few native applications a user can choose
from to interact with Matrix. Fractal has big audience of users and is actively
improved and worked on. Like many other GNOME Projects, Fractal was

2Fractal: https://gitlab.gnome.org/GNOME/fractal/
3GNOME: https://gnome.org

6.2 Crypto Module 77

created with a big focus on usability and interface design. The client does
not currently implement Matrix end-to-end encryption, primarily because it
is difficult to implement.
Fractal is split into two major parts. An API backend part, which com-
municates with the Matrix server, and a part that contains the GUI and
data handling. Because Fractal is open source software and because of its
modular structure it is simple to add new features. This property was used
to add end-to-end encryption to Fractal to test the created library, and to
experiment with the proposed designs.

6.2 Crypto Module

The created module is designed to work as a library, which can be in-
tegrated into any other software without much knowledge about how the
module internally works. The library is fundamentally an abstraction from
the Secret Store feature integrated in OpenEthereum.
The library has three distinct interaction points with the OpenEthereum
node as shown in figure 6.2.

Figure 6.2: Overview of the internal structure of the reference implementa-
tion.

78 6. Reference Implementation

• Smart Contract. The library interacts with the Smart Contract, which
is used as permissioning contract for the Secret Store. This interaction
is done via the JSON-RPC interface of the OpenEthereum client.

• Secret Store API. This is the interaction point for operations performed
on the users node. This includes encryption and decryption calls. All
these calls are made via the JSON-RPC interface.

• Secret Store. This is the interaction point with the secret store. This
interface is the only one which uses plain HTTP for communication.

6.2.1 Public API

The library exposes a simple interface to be used by client applications.
The module has a single object to interact with. The object exposes three
main methods:

• Encrypt. This method takes a document as input and encrypts it, and
stores the encryption keys in the Secret Store.

• Allow access. This method adds the provided list of account addresses
to the permissioning contract so that the specified address can gain
access to the decryption keys.

• Decrypt. This method asks the secret store for the decryption keys.
Only if the user is allowed to access the document they will receive the
keys and decrypt the document.

6.2.2 Encryption

To encrypt a document the user needs to provide essentially three values
to the crypto module:

• Document id. This can be any string. This reference implementation
provides an auxiliary function that computes the sha256 of a provided
document to standardize the used ID.

6.2 Crypto Module 79

Figure 6.3: Flow of function calls to encrypt a document. The functions
highlighted in blue are calls to the Secret Store node, the other calls are to
the user’s own node.

• Document. The message or data the user likes to encrypt.

• Threshold. The number of secret store nodes that need to agree on the
permissioning contract state.

Figure 6.3 shows the process of encrypting a document. A document can be
any data but it has to be encoded as hexadecimal string.
To encrypt a message the module internally talks to the user’s node and to
the Secret Store node. The interaction with the user’s node is performed via
JSON-RPC function calls. The Secret Store has a different interface which
uses plain HTTP requests. The operations sent to the user’s node and to the
Secret Store in detail are:

• signRawHash. This computes recoverrable ECDSA (Elliptic Curve
Digital Signature Algorithm) signatures. This method signs the 256-bit
hash of the document id.

• generate_server_key (Secret Store). This method generates the server
key, it is sent directly to the Secret Store node. This also specifics the

80 6. Reference Implementation

number of nodes needed to retrieve the private key, called threshold.
This method returns the public portion of the generated key.

• generateDocumentKey. This method generates the document key in a
fashion so that it remains unknown to all nodes of the Secret Store. It
uses as input the public server key and returns all information needed
to encrypt the document and to store the document key to the Secret
Store.

• encrypt. This function encrypts the document.

• store_document_key (Secret Store). The final step is to store the
document key to the Secret Store. So that it can be retrieved by a
different user.

To allow other users to access the decryption key for a specific document
identified via the document id the originator needs to give access to it by
adding the address of allowed users to the permissioning contract. This is
done by calling the dedicated function of the crypto module.

6.2.3 Decryption

Once a document was encrypted, the creator of the encrypted message
needs to send the document ID and the encrypted document to the receiving
peer.
When a user wants to decrypt an encrypted message they need to know the
document ID and the encrypted document. The figure 6.4 shows the flow of
information for the decryption. The specific steps performed by the crypto
module to decrypt a message are:

1. signRawHash. This computes recoverrable ECDSA (Elliptic Curve
Digital Signature Algorithm) signatures. This method signs the 256-
bit hash of the document ID. This is the same method called as for
encryption.

6.2 Crypto Module 81

2. get_document_key (Secret Store). This method asks the Secret Store
for the decryption keys. This request is sent directly to a Secret Store
node. This only succeeds when the originator of the encrypted doc-
ument has given the correct access permission to the receiver via the
permissioning contract.

3. shadowDecrypt. This method uses the previously obtained keys to
decrypt the encrypted document and returns the cleartext of the doc-
ument.

Figure 6.4: Flow of function calls to decrypt a previously encrypted docu-
ment. The functions highlighted in blue are calls to the Secret Store node,
the other calls are to the user’s own node.

6.2.4 Permissioning contract

The crypto module also exposes two function to interact with the smart
contract used as a permissioning contract for the Secret Store.

• allow_access. This function takes as input a document ID and a list
of Ethereum account addresses. If the user has created this document
and has stored keys for it in the Secret Store the permissioning contract

82 6. Reference Implementation

will be updated and the address are included in the list of user allowed
to decrypt the document.

• check_permission. This method calls the function of the smart contract
that is used to check the permission to access the private keys stored
in the Secret Store. This function’s main purpose is to test the smart
contract and to measure the time needed to execute the operation.

6.2.5 Client integration

Figure 6.5: Modified interface of Fractal. The button with the lock icon was
added to allow users to enable end-to-end encryption.

The crypto module was built to be integrated into Fractal. So far Frac-
tal does not have any kind of end-to-end encryption. However, its modular

6.2 Crypto Module 83

design allows it to be easily extended.
Fractal’s interface was modified to allow users to enable the end-to-end en-
cryption for a specific room, as shown in figure 6.5. Since the end-to-end en-
cryption method is built as an extension to the Matrix protocol, other clients
that do not implement encryption via the Secret Store function normally but
show an error message to the user that a message can’t be decrypted, since
of course they were not modified to support the new extension.

Chapter 7

Analysis and evaluation

This chapter contains the description of the performed tests to evaluate
the proposed system. It also explains the expected results and compares
them with the obtained results.
The setup for each test consists of a cluster of 25 computers, each running
an instance of OpenEthereum. 24 nodes are running on the computers in the
computer laboratory Ercolani of the University of Bologna. And one node is
running on the computer executing the tests. The nodes at the University are
connected with the local test computer over the Internet. The 25 nodes form
the Secret Store and only these nodes obtain a share of the secret. Based on
the set threshold a different number of nodes are involved in the encryption
and decryption of a message.
In addition to the set of nodes forming the Secret Store, an additional node
runs on the test computer that runs all user operations e.g. user interaction
with the used smart contract. Figure 7.1 shows the complete test network
setup. The created network is a private development chain that uses instant
seal. This means that transactions are included into block that are instantly
mined and verified.
To setup the network a custom shell script was used to generate the config-

uration for each node as well as to start and stop the different instances on
all machines.

85

86 7. Analysis and evaluation

Figure 7.1: Test network setup. Each node is connected to all other nodes,
hence the nodes form a fully connected Ethereum network. 25 nodes are part
of the Secret Store. The node marked in blue is the only one not participating
in the Secret Store, but it’s home to the user’s account.

In all the tests each single data point was obtained by running an operation
five times and then the average value was calculated. This was done to re-
trieve more precise results.

The following tests were performed to evaluate the created system:

• Varying length of messages. Every parameter except the length of the
encrypted message remains the same. The time of encryption and the
time of decryption was measured.

• Varying threshold. This test keeps the message length fixed to 30
characters. The threshold was changed to measure the variation of
time needed to operate.

• Access time to smart contract. This evaluation measures the access
time to the smart contract. It varies the number of users allowed to
decrypt a specific message.

7.1 Varying length of messages 87

• Gas usage. In this test the Gas usage is tracked. This evaluation varies
the number users allowed to access a given message.

7.1 Varying length of messages

This test analyzes the time needed to encrypt and to decrypt of messages
with different lengths. The length was varied from 100 to 4400 characters.
The threshold was kept at a fix value of 1. The results shown in figure 7.2
are split into encryption time, decryption time and total time.

Since the Secret Store only stores the encryption keys that don’t change

Figure 7.2: Time of encryption and decryption for messages with different
length.

in size, not much variation was expected and therefore the result confirms
the assumption. The small variation of operation time is most likely caused

88 7. Analysis and evaluation

by variation of network speed, but overall the time needed doesn’t depend
on the size of the message and therefore the resulting curve is linear. Of
course in a real public Ethereum network the times would be much higher
since the time needed to confirm a transaction would be much higher and
not instantly, like in this development chain.

Figure 7.3: Time of encryption for messages with different length, split into
encryption time and time to set the access permissions via smart contract.

Figure 7.3 shows the encryption time split into the time needed to gener-
ate the required keys and to encrypt the message, and the time required to
set the correct access rights via the smart contract. As the previous graph
7.2 already showed, the time needed to encrypt a message doesn’t depend on
the message size.

7.2 Varying threshold 89

7.2 Varying threshold
The threshold is a key parameter of the Secret Store. It defines how many

nodes need to agree on the permissioning contract state and how many shares
are required to access the decryption keys. Therefore this test tries different
thresholds ranging from 1 to 24. Since the network only has 25 nodes the
maximum possible threshold is 24, because the number of agreeing nodes
needs to be bigger then the threshold. As figure 7.4 shows the encryption
time remains mostly constant. The decryption on the other hand increases
slightly with increasing threshold. This result was to expect because with a
increasing threshold more and more nodes are involved in the key retrieval.

Figure 7.4: Time of encryption and decryption using different thresholds.

To observe the time to encrypt and to interact with the smart contract
separately the results are reported in figure 7.5 with more detail. It’s possible
to see that the biggest time consumption comes from actually generating the

90 7. Analysis and evaluation

keys and to encrypt a message. It’s also visible that the curve is almost
linear.

Figure 7.5: Time of encryption using different thresholds, split into encryp-
tion time and time to set the access permissions via smart contract.

7.3 Access time to smart contract
Another important measurement is the time required to set the users al-

lowed to decrypt a message via the smart contract. Figure 7.6 shows the
time required to set the users allowed to decrypt a message. It is called when
encrypting a message, but could also be called at any later point to update
the access permissions. The variable in this test is the number of users al-
lowed to decrypt a message. It was varied from 10 to 360 users. The test
results show that the time required is proportional to the number of users.

7.4 Gas usage 91

Figure 7.6: Time to set access permission with increasing number of allowed
users, and the time to check permission via smart contract.

The second measurement in this test was the time needed to check the per-
mission. This function is called when decrypting a message. It is called
directly by each Secret Store node to verify if a user is allowed to obtain
the decryption keys. This access time doesn’t increase as much as the time
needed to set the access permission but it increases noticeably with an in-
creasing number of users.

7.4 Gas usage

Each call to a smart contract requires some amount of Gas, the crypto full
used in Ethereum. Smart contracts have different types of functions. The
functions that do not change the state (e.g. reading the memory) doesn’t

92 7. Analysis and evaluation

require any Gas. Functions that update the state or change the memory
consume Gas which can be calculated by adding up the Gas consumption of
each operation done by the function. This test evaluates the actual Gas used
to set the access rights to allow the decrpytion of a message. Of course the
system doesn’t use any Gas for looking up the permission since it doesn’t
change the memory.

Figure 7.7: Gas used for setting access permission with increasing number of
allowed users.

Figure 7.7 shows that the used Gas to set the access rights is proportional
to the number of users allowed to access the message. This was to be expected
because the allow_access function uses a for loop. Eliminating the iteration
over the list of allowed users would lower the Gas consumption. It would also

7.4 Gas usage 93

be of desire to make the Gas consumption independent from the number of
specified addresses.

Conclusion

In this work a system for end-to-end encryption was proposed. It is
built on top of the Secret Store feature integrated into OpenEthereum, so
the security of the system is guaranteed via the blockchain-based Ethereum
computing platform. The created scheme was used to implement a library
that can be used to add end-to-end encryption for different communication
protocols, with a special focus on the Matrix instant messaging protocol.
The proposed design was built with non-technical users in mind, so even
people who don’t know anything about the system can easily use it. The en-
cryption of a communication involves two distinct processes. The process of
encryption and decryption is straightforward and can be implemented with-
out any user interaction, but the verification of a user is still an open issue
much researched because it generally requires some user interaction to verify
the identity of the other communication parity. In this work two different
solutions for this issue were discussed, as well as a mix between the two
possible solutions. The mixed solution is composed of a public database of
identities and a manual verification. To store the public identities, it utilizes
a smart contract.
The Ethereum blockchain is a secure way to store the data, therefore, the
proposed system eliminates the need of backups of the keys and as long as
the user maintains the correct access permission in the smart contract they
can’t ever lose access to send messages.
This work only includes a relatively simple permissioning contract, but it
would be possible to create a much more advanced system for controlling the

95

96 Conclusion

access to a communication. Thanks to smart contracts it would be possible
to create a system that allows to give permission to access a message to a new
user joining the conversation at a later point or also to revoke the permission
at some point in the future. Other end-to-end encryption systems leak this
ability because they normally require to encrypt a message specifically for
each user.
The reference implementation written to test the proposed design was cre-
ated in the form of a library. The library exposes a simple application pro-
gramming interface (API). Thanks to this library Fractal, the Matrix client
modified in this work, has gained the ability to end-to-end encrypt messages.
Even though the library was built for the integration into Fractal, it was
designed to be completely agnostic of the transport protocol, hence the same
library can be used without much trouble to add end-to-end encryption to
other communication protocols.
Multiple tests were performed to evaluate the performance and to analyze
the speed of the created system. Each test was executed on a network of
25 Ethereum nodes. To run the nodes the computers of the computer lab
Ercolani at the university of Bologna were used.
The tests performed to evaluate the time needed to encrypt a message showed
that the time required is independent from the message size as well as from
the threshold. The time required to decrypt a message, on the other hand,
increased when the threshold was increased, but just as with the encryption
time the decryption time isn’t connected to the size of the message. This
is because only the key is stored in the Secret Store, not the message itself.
Even though the threshold has an impact on the speed of the system, the
time needed to encrypt a message stays around 1s and the time needed to
decrypt a message stays below 400ms with a threshold of 24 nodes.
The test performance to evaluate the speed of the interaction with the smart
contract was run with different numbers of users since this is the only vari-
able. This test showed that the time needed to allow a list of users to access
a message is proportional to the size of the list. The call to the function

Conclusion 97

check_permission also increases with the size of the set of allowed users but
much more slowly than the function used to allow users to access a message.
Also, the Gas consumption to execute the permissioning contract was ana-
lyzed. The function check_permission doesn’t consume any Gas because it
doesn’t modify the memory, but the function allow_access requires a Gas
amount proportional to the number of users specified in the function call.
The test results show that even with a threshold of 24, the time needed to
encrypt a message is about 1s. However, running the same operation on a
non-development network could significantly decrease the encryption speed
because the transaction would not be executed instantly. To increase the
speed, a combination of the Secret Store and a symmetric-key encryption
scheme could be used, where the Secret Store is used to share a symmetric
key. Generally, symmetric-key schemes are much faster than public-key en-
cryption systems. This would significantly reduce the overhead needed for
the encryption of each message.
The test results show that the proposed end-to-end encryption system is scal-
able for a large number of messages and for large message sizes, but a large
number of users can slow down the interaction with the smart contract. This
issue can be solved by collecting the users of a room into a virtual group,
which then allows to give permission to access a message in bulk.

Bibliography

[1] The Matrix.org Foundation CIC. Matrix [homepage]. https://matrix.
org/, 2019. [Online; accessed 20-April-2020].

[2] Hubert Chathi. An introduction to end-to-end encryption in Matrix and
Riot. https://www.uhoreg.ca/blog/20170910-2110, 2017. [Online;
accessed 11-April-2020].

[3] Parity ethereum. https://openethereum.github.io/wiki/Parity-
Ethereum. [Online; accessed 21-May-2020].

[4] Secret Store. https://openethereum.github.io/wiki/Secret-
Store. [Online; accessed 21-May-2020].

[5] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy, Second Edition. Chapman Hall/CRC, 2nd edition, 2014.

[6] Christof Paar and Jan Pelzl. Understanding Cryptography: A Textbook
for Students and Practitioners. 01 2010.

[7] John Wagnon. Real Cryptography Has Curves: Making The
Case For ECC. https://devcentral.f5.com/s/articles/real-
cryptography-has-curves-making-the-case-for-ecc-20832. [On-
line; accessed 19-June-2020].

[8] Giorgio Zanin. Secret Sharing Schemes and their Applications. http://
wwwusers.di.uniroma1.it/smart/ppt/zanin.pdf. [Online; accessed
24-April-2020].

99

100 Bibliography

[9] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
November 1979.

[10] Foundations of Applied Mathematics, Volume 2 : Algorithms, Approxi-
mation, Optimization. SIAM, 2020.

[11] Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft. The *design
and analysis of computer algorithms. Addison-Wesley, 1974.

[12] Andy Greenberg. Hacker Lexicon: What Is End-to-End Encryp-
tion? https://www.wired.com/2014/11/hacker-lexicon-end-to-
end-encryption/, 2019. [Online; accessed 24-April-2020].

[13] Moxie Marlinspike Trevor Perrin. The Double Ratchet Algo-
rithm. https://signal.org/docs/specifications/doubleratchet,
2016. [Online; accessed 7-May-2020].

[14] Moxie Marlinspike. WhatsApp’s Signal Protocol integration is now com-
plete. https://signal.org/blog/whatsapp-complete/, 2016. [On-
line; accessed 7-May-2020].

[15] Wire Swiss GmbH. Wire Security Whitepaper. https://wire-docs.
wire.com/download/Wire+Security+Whitepaper.pdf, 2018. [Online;
accessed 7-May-2020].

[16] The Matrix.org Foundation CIC. End-to-End Encryption imple-
mentation guide. https://matrix.org/docs/guides/end-to-end-
encryption-implementation-guide, 2019. [Online; accessed 10-April-
2020].

[17] Moxie Marlinspike. The Double Ratchet Algorithm. https://signal.
org/blog/advanced-ratcheting/, 2013. [Online; accessed 7-May-
2020].

[18] Pierre Karpman Ange Albertini Yarik Markov Marc Stevens,
Elie Bursztein. The first collision for full sha-1. 2017.

Bibliography 101

[19] ConsenSys. Are you really using SHA-3 or old code? https:
//medium.com/@ConsenSys/are-you-really-using-sha-3-or-old-
code-c5df31ad2b0, 2016. [Online; accessed 29-April-2020].

[20] The Economist. Who is Satoshi Nakamoto? https:
//www.economist.com/the-economist-explains/2015/11/02/who-
is-satoshi-nakamoto, 2015. [Online; accessed 13-May-2020].

[21] Imran Bashir. Mastering Blockchain. Packt Publishing, 2017.

[22] Maarten : van Steen and Andrew S. Tanenbaum. Distributed Systems.
CreateSpace Independent Publishing Platform, 2017.

[23] Ralph C. Merkle. A digital signature based on a conventional encryp-
tion function. In Carl Pomerance, editor, Advances in Cryptology —
CRYPTO ’87, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

[24] Georg Becker and Ruhr-Universität Bochum. Merkle signature schemes,
merkle trees and their cryptanalysis, 2008.

[25] Azaghal. Image of hash tree. https://commons.wikimedia.org/w/
index.php?curid=18157888, 2012. [Online; accessed 7-May-2020].

[26] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. 4(3), 1982.

[27] Ameer Rosic. Proof of work vs proof of stake: Basic mining
guide. https://blockgeeks.com/guides/proof-of-work-vs-proof-
of-stake/, 2017. [Online; accessed 7-May-2020].

[28] Bitcoin energy consumption index. https://digiconomist.net/
bitcoin-energy-consumption. [Online; accessed 7-May-2020].

[29] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency
with proof-of-stake. 2012.

102 Bibliography

[30] Delegated proof-of-stake consensus. https://bitshares.org/
technology/delegated-proof-of-stake-consensus/. [Online; ac-
cessed 7-May-2020].

[31] Nichanan Kesonpat. Dpos. https://www.nichanank.com/blog/2018/
6/4/consensus-algorithms-pos-dpos, 2018. [Online; accessed 7-
May-2020].

[32] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of at-
tacks on ethereum smart contracts (sok). In Matteo Maffei and Mark
Ryan, editors, Principles of Security and Trust, pages 164–186, Berlin,
Heidelberg, 2017. Springer Berlin Heidelberg.

[33] Massimo Bartoletti and Livio Pompianu. An empirical analysis of smart
contracts: Platforms, applications, and design patterns. In Michael
Brenner, Kurt Rohloff, Joseph Bonneau, Andrew Miller, Peter Y.A.
Ryan, Vanessa Teague, Andrea Bracciali, Massimiliano Sala, Federico
Pintore, and Markus Jakobsson, editors, Financial Cryptography and
Data Security, pages 494–509, Cham, 2017. Springer International Pub-
lishing.

[34] Openzeppelin. https://openzeppelin.com, 2017-2019. [Online; ac-
cessed 25-June-2020].

[35] Overview of dapp development. https://openethereum.github.io/
wiki/Deploying-Dapps-to-Parity-UI.html. [Online; accessed 21-
May-2020].

[36] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction
processing in bitcoin. In Rainer Böhme and Tatsuaki Okamoto, edi-
tors, Financial Cryptography and Data Security, pages 507–527, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg.

[37] web3.js. https://github.com/ethereum/web3.js/blob/0.15.0/lib/
utils/utils.js#L40. [Online; accessed 21-May-2020].

Bibliography 103

[38] Solidity. https://solidity.readthedocs.io/en/v0.6.8/, 2016-2020.
[Online; accessed 24-May-2020].

[39] The Matrix.org Foundation CIC. Introduction [to Matrix]. https:
//matrix.org/docs/guides/introduction, 2019. [Online; accessed
20-April-2020].

[40] Ben Parsons. Dweb: Decentralised, Real-Time, Interoperable Commu-
nication with Matrix. https://hacks.mozilla.org/2018/10/dweb-
decentralised-real-time-interoperable-communication-with-
matrix/, 2018. [Online; accessed 20-April-2020].

[41] The Matrix.org Foundation CIC. Matrix Specification. https://
matrix.org/docs/spec/, 2014-2019. [Online; accessed 20-April-2020].

[42] Megolm group ratchet. https://gitlab.matrix.org/matrix-org/
olm/-/blob/master/docs/megolm.md. [Online; accessed 12-April-
2020].

[43] Rust. https://www.rust-lang.org/. [Online; accessed 24-May-2020].

[44] Introducing JSON. https://www.json.org/json-en.html. [Online;
accessed 15-April-2020].

[45] Dave Marshall. Remote Procedure Calls (RPC). https://users.cs.
cf.ac.uk/Dave.Marshall/C/node33.html, 1999. [Online; accessed 20-
April-2020].

[46] JSON RPC API. https://wiki.parity.io/JSONRPC. [Online; ac-
cessed 20-April-2020].

