
DRAFT

Evaluating the Accuracy of Collaboration Networks
for Free Software Development Projects

Michael Catanzaro
Igalia S.L.

Email: mcatanzaro@igalia.com

Abstract—Several recent papers apply social network analysis
techniques to study software development practices in free
software projects. We demonstrate serious, previously-unreported
methodological issues with a recently-published work on software
development collaboration networks, showing that its network
construction process suffered from serious sources of error.
Research on collaboration networks must be more carefully
considered in order to avoid arriving at invalid results due to
the effects of errors and confirmation bias.

I. INTRODUCTION

Recently, many software companies have moved towards
allowing employees to work remotely, in order to attract more
talented employees from across the world, or to save on costs
of office space. Of course, working remotely increases the dif-
ficulty of collaboration with other employees. Recent software
engineering research, such as [1], seeks to determine whether
distributed development teams can function effectively by
examining existing collaboration in free software projects,
which have historically been developed by distributed groups
of programmers. This is done by constructing networks in
which developers are represented by nodes and collaboration
between developers by edges, and visually inspecting the
results.

This paper evaluates the methodology and conclusions of
[1], which focuses on collaboration networks for the WebKit
project. Unfortunately, [1] is found to suffer from several
methodological issues. After providing in Section II brief
background information on the WebKit project and on the
social network and ethnographic analyses performed in the
original paper, Section III examines these methodological is-
sues and discusses possible remedies. We conclude in Section
IV with a warning that researchers must be skeptical of conclu-
sions drawn from visual inspection of collaboration networks.
A more rigorous approach to such analysis is required.

II. BACKGROUND

We first examine basic background on the WebKit project
needed to understand the context of this work, then discuss
some points regarding the social network analysis and online
research performed for [1].

A. WebKit

WebKit is a popular free software web rendering engine,
most notable for its use in Apple’s Safari web browser. It is
also used by a variety of other OS X, iOS, Windows, and
GNU/Linux applications. Originally forked by Apple from

KDE’s KHTML rendering engine, it rose to prominence in
2008 with the release of Google Chrome, a then-new browser
based on WebKit. WebKit quickly became the web engine of
choice for almost any purpose, due to its focus on embedding
APIs at a time when its only serious competitor, Mozilla,
moved to eliminate its own support for embedding to simplify
the development of Firefox [2], driving embedders to WebKit.
Soon a large number of industry players—most any company
that needed to display web content in a software application or
consumer product—were committed to WebKit development.

After the release of Chrome, Google quickly became the
largest contributor to WebKit and held this position for several
years. However, there existed several technical differences
between Google and Apple’s use of WebKit. Notably, Google
implemented its multi-process architecture inside Chromium,
above the WebCore component of WebKit, whereas Apple
implemented its multi-process architecture in the WebKit2
component of WebKit, which Google did not use. This and
other technical differences caused significant friction in the
project, and ultimately led to Google’s decision in 2013 to fork
the WebCore component into Blink, which now resides in the
Chromium project [3]. Since then, many companies besides
Google have switched to Chromium and ceased contributing
to WebKit.

[1] presents the claim that WebKit2 is a fork of WebKit,
and that Blink is a fork of WebKit2. It includes a flow chart to
represent this. This is not correct. WebKit2 is one component
within the WebKit project, not a fork. Blink is a fork, but of
the WebCore component of WebKit, not of WebKit2.

B. Social Network Analysis

An example of a collaboration network from [1] is shown
in Figure 1. The paper reports that this network represents
collaboration between September 2008 (when Google began
contributing to WebKit) and February 2011 (the departure of
Nokia from the project); however, it actually represents the
period between February 2011 and July 2012 [4]. The depicted
size of each node is proportional to its degree centrality. Note
that this network is inaccurate as it is affected by the issues
discussed in Section III.

The paper does not precisely describe the methods used
to study the network, referring to the entire process as “social
network analysis.” Although the precise details of this analysis
are not essential to the work, it would be desirable for
the paper to have described its analysis process in more



DRAFTFig. 1. A collaboration network from [1], reproduced here in its original form
in accordance with the terms of its CC BY-NC-SA 4.0 license [4].

detail, rather than in vague terms. We know that community
detection was performed using fast modularity maximization
[5] to generate an alternate visualization of the networks [4];
however, the results were not presented in [1], possibly due to
space constraints.

C. Virtual Ethnography

Virtual ethnography is a new term for the process of study-
ing cultures by reading Internet resources [6], such as online
news articles, corporate press releases, and developer blog
posts. The authors of [1] performed extensive ethnographic
research on the WebKit project to obtain an understanding of
the history of the project. They used this research to select key
events in the project history, such as the launch of the Chrome
web browser, the departure of Nokia from the project, and the
beginning of patent lawsuits between Apple and Samsung,
as discussed in [1]. The authors then created collaboration
networks that reflected only commits made between those
events.

The authors used their knowledge of the project’s contribu-
tors and history to arrive at conclusions based on the collab-
oration networks. For instance, they observed that companies
that appear on the peripheries of the collaboration networks
were less “willing to contribute back to the existing projects
on an ongoing basis, to assure that the technology continued
to meet their [...] needs,” etc. Although their conclusions are
reasonable and most likely correct, we show in Section III
that the collaboration networks these conclusions were drawn
from contain so many errors as to be essentially meaningless.
Because accurate conclusions were drawn from meaningless
networks, it is clear that the prior ethnographic study led to
confirmation bias in drawing specific interpretations from the
collaboration networks.

III. METHODOLOGICAL ISSUES

We examine various methodological issues discovered by
analyzing [1]. Section III-A discusses the effects on the collab-
oration network of choosing a poor definition of collaboration.
Section III-B discusses a major source of error in detecting
the company affiliation of many contributors. Section III-C
describes a serious mistake in the data collection process. Each
of these issues is quite severe, and any one taken alone calls
into question the validity of the entire study. It must be noted
that such issues are not necessarily unique to [1], and must
be kept in mind for all future studies that utilize collaboration
networks.

A. Defining Collaboration

Obviously, the precise definition used to model collabora-
tion has tremendous impact on the usefulness of the resul-
tant collaboration network. Many collaboration networks are
built using definitions of collaboration that are self-evidently
useful. For example, [7] considers collaboration networks of
movie actors, where nodes represent actors and an edge exists
between two nodes if the corresponding actors performed to-
gether in the same movie. [8] examines coauthorship networks,
where nodes represent researchers and an edge exists between
two nodes if the corresponding researchers coauthored an
academic paper together. There is little doubt that, in such
cases, edges in the network represent real-world collaboration.

[1] adopts a similar approach to building collaboration
networks, where developers are represented by nodes, and an
edge exists between two nodes if the corresponding developers
modified the same file in the time period under consideration
for the construction of the network. However, it is not clear that
this definition of collaboration is actually useful. Consider that
it is a regular occurrence for developers who do not know each
other and may have never communicated to modify the same
files. Consider also that modifying a common file does not
necessarily reflect any shared interest in a particular portion
of the software project. For instance, a file might be modified
when making an interface change in another file, or when
fixing a build error occurring on a particular platform. Such
occurrences are, in fact, extremely common in the WebKit
project. Additionally, consider that there exist particular source
code files that are unusually central to the project, and must
be modified more frequently than other files. It is highly likely
that almost all developers will at one point or another make
some change in such a file, and therefore be connected via
a collaboration edge to all other developers who have ever
modified that file. Figure 2 shows a snapshot of the Subversion
(SVN) revision history for one such central file. Notice that
each developers who recently modified this file was working
on entirely unrelated projects. This is typical.

It is true, as assumed by [1], that particular developers work
on different portions of the WebKit source code, and collabo-
rate more with particular other developers. For instance, devel-
opers who work for the same company typically, though not
always, collaborate most with other developers from that same
company. However, [1]’s naive definition of collaboration



DRAFTFig. 2. Recent WebKit SVN revision history for the file WebPageProxy.cpp,
truncated for legibility. The commit messages reveal that the contributors who
recently modified this file were working on unrelated projects.

should ensure that most developers will be considered to have
collaborated equally with most other developers, regardless
of the actual degree of collaboration. For instance, consider
developers A and B who regularly collaborate on a particular
source file. Now, developer C, who works on a platform
that does not use this file and would not ordinarily need to
modify it, makes a change to some cross-platform interface
in another file that requires updating this file. Developer C
is now considered to have collaborated with developers A
and B on this file! Clearly, this is not a desirable result,
as developers A and B have collaborated far more on the
development of the file. Moreover, consider that an edge exists
between two developers in the collaboration network if they
have ever both modified any file anywhere in WebKit; then
we can expect to form a network that is almost complete. It is
evident that some method of weighting collaboration between
different contributors would be desirable, as the unweighted
collaboration network does not seem useful.

One might argue that the networks presented in [1], such
as the network in Figure 1, clearly show developers exist
in subcommunities on the peripheries of the network, that
the network is clearly not complete, and that therefore this
definition of collaboration sufficed, at least to some extent.
However, this is only due to another methodological error in
the study. Section III-C explains how the study managed to
produce collaboration networks with noticeable subcommuni-
ties despite these issues.

We note that the authors of [1] chose this same definition
of collaboration in their more recent work on OpenStack
[9], so there exist multiple studies using this same flawed
definition of collaboration. We speculate that this definition
of collaboration is unlikely to be more suitable for OpenStack
or for other software projects than it is for WebKit. The soft-
ware engineering research community must explore alternative

Email Domain Affiliation Commits

apple.com Apple 8760

webkit.org Unknown 1523

igalia.com Igalia 1014

gmail.com Unknown 445

samsung.com Samsung 275

crf.canon.fr Canon 206

navercorp.com Naver Corporation 129

outlook.com Unaffiliated 93

cs.washington.edu Apple 43

collabora.co.uk Collabora 29
TABLE I

EMAIL DOMAINS USED BY TOP WEBKIT CONTRIBUTORS IN 2015

models of collaboration when undertaking future students of
software development collaboration networks—in particular,
models with edge weights—in order to more accurately reflect
collaboration.

One particular model of collaboration that might work well
for WebKit specifically is to measure collaboration between
committer and reviewer. In the WebKit project, committers
must have all substantial patches approved by a WebKit
reviewer. The patch review process reflects actual collaboration
between committer and reviewer, and would likely serve as
a more suitable starting point for developing collaboration
networks, especially if edge weights are employed. However,
this approach would not work in general, as WebKit’s review
procedures are not typical of other free software projects.

B. Detecting Contributor Affiliation

One difficulty when building collaboration networks is the
need to correctly match each contributor with the correct
company affiliation. Although many free software projects are
dominated by unaffiliated contributors, others, like WebKit, are
primarily developed by paid contributors. Table I displays the
companies that contributed the most to WebKit in 2015, based
on the number of times a particular email domain appears in
WebKit changelog entries made during that year.1

Note the presence of two emails domains categorized as
Unknown: webkit.org and gmail.com.2 Many developers com-
mit to WebKit using personal email accounts such as GMail
accounts; additionally, many developers use webkit.org email
aliases, which were previously available to active WebKit
contributors. These developers may or may not be affiliated
with companies that contribute to the project. Use of personal
email addresses is a source of inaccuracy when constructing
collaboration networks, as it results in an undercount of cor-
porate contributions. For instance, Table II lists a small sample

1The University of Washington domain listed in Table I is shown as
associated with Apple because the only contributor to use this domain is
an Apple employee.

2outlook.com is classed as Unaffiliated rather than Unknown because only
one developer used this email domain, and he is known to be unaffiliated with
companies contributing to WebKit development.



DRAFT

Contributor Email Domain Actual Affiliation

Adam Barth webkit.org Google

Alex Christensen webkit.org Apple

Csaba Osztrogonác webkit.org University of Szeged

Daniel Bates webkit.org Apple

Eric Seidel webkit.org Google

Ryosuke Niwa webkit.org Apple

Sam Weinig webkit.org Apple

Sukolsak Sakshuwong gmail.com Apple
TABLE II

PERSONAL EMAIL ACCOUNT DOMAINS USED IN CHANGELOG ENTRIES BY
SELECTED WEBKIT CONTRIBUTORS, AND THEIR ACTUAL AFFILIATIONS

of contributors who have contributed to WebKit using personal
email accounts, alongside their actual company affiliations. We
can expect this issue has led to serious inaccuracies in the
reported collaboration networks.

This substantial source of error is neither mentioned nor
accounted for in [1]; all contributors in Table II were therefore
miscategorized as unaffiliated. However, the authors clearly
recognized this issue, as it has been accounted for in their
more recent work covering OpenStack [9] by cross-referencing
email addresses from git revision history with a database
containing corporate affiliations maintained by the OpenStack
Foundation. Unfortunately, no such effort was made for the
WebKit data set.

The WebKit project maintains comparable data in the form
of a JSON file3 which could be used to associate personal
email addresses with company email addresses, in order
to reduce the number of corporate contributions incorrectly
categorized as unaffiliated. However, it is not clear how to
handle contributors whose affiliation changes over time. For
example, Figure 3 shows a sample of data from this file for
a developer who has contributed to WebKit while moving
between three different companies. This same situation holds
for many other developers (although usually a given contrib-
utor has only switched between two companies rather than
three). Affiliation changes prevent naively using the JSON data
to match personal emails to company emails, ensuring that
personal emails will remain a source of error unless handled
manually.

It must be noted that simply looking at the total number
of commits coming from particular email domains reveals
dramatic changes without any network construction or visual-
ization required. Comparing the data in Table I to that in Table
III, showing the same data from 2012—the last year before
Google’s Blink fork—clearly reveals the exodus of corporate
contributors from the WebKit project in recent years.4

Table III also reveals that the project was previously domi-

3Located in the WebKit source repository at Tools/Scripts/webkitpy/
common/config/contributors.json

4It also reveals that Igalia has remained a core WebKit contributor after
BlackBerry and Nokia left the project, despite [1]’s observation that Igalia
previously represented the interests of these companies in the WebKit project.

Fig. 3. Selected entry from contributors.json showing a developer with
multiple registered email accounts.

Email Domain Affiliation Commits

chromium.org Unknown (primarily Google) 11124

apple.com Apple 4943

webkit.org Unknown 3904

gmail.com Unknown 1879

intel.com Intel 1607

google.com Google 1576

rim.com BlackBerry 1139

igalia.com Igalia 1108

nokia.com Nokia 872

samsung.com Samsung 806
TABLE III

EMAIL DOMAINS USED BY TOP WEBKIT CONTRIBUTORS IN 2012

nated by contributors with chromium.org email domains. This
domain is equivalent to webkit.org in that it can be used by
contributors to the Chromium project regardless of corporate
affiliation; however, most contributors with Chromium emails
are actually Google employees. The high use of Chromium
emails by Google employees appears to have led in [1]
to a dramatic—by roughly an entire order of magnitude—
undercount of Google’s contributions to the WebKit project, as
only contributors with google.com emails were considered to
be Google employees. The vast majority of Google employees
used chromium.org emails, and so were counted as unaffiliated
developers. This demonstrates the importance of community-
specific knowledge when engaging in studies of free software
projects. Most WebKit developers were surely aware that the
project was, at the time, dominated by Google, but the severe
underrepresentation of Google nodes in [1]’s collaboration
networks went unnoticed until now. We can safely assume
that most of the gray nodes in Figure 1 should actually be
orange.

As a final example of error caused by changing emails,
consider that in 2013, Research In Motion Limited (RIM)
changed its name to BlackBerry Limited. Around this time,
its developers ceased to use rim.com emails in WebKit
changelogs, and began using blackberry.com emails. Since
this switch, its developers were classed as unaffiliated by



DRAFT

[1], because the study considered only rim.com emails.5

Fortunately, the BlackBerry case had very little impact on the
networks because it occurred towards the end of the study
period, and most blackberry.com commits were lost due to the
issue described in Section III-C. The drastic undercounting of
Google commits is clearly a more serious issue.

C. Missing Data

[1] incorrectly claims to have gathered its data from both
WebKit’s SVN revision history and from its changelog files.
We must draw a distinction between changelog entries and
SVN revision history. Changelog entries are inserted into
changelog files that are committed into the SVN repository;
they are completely separate from the SVN history. Each sub-
project within the WebKit project has its own set of changelog
files used to record changes under the corresponding directory.

In fact, [1] processed only the changelog files. This was
actually a good choice, as the changelog files are much more
accurate than the SVN history, for two reasons. Firstly, it is
easy for a contributor to change the email address entered into
a changelog file, e.g. after a change in company affiliation.
However, it is difficult to change the email address used to
commit to SVN, as this requires requesting a change with the
SVN administrator; accordingly, contributors are more likely
to use older email addresses, lacking accurate company affilia-
tion, in SVN revisions than in changelog files. Secondly, many
SVN revisions are not directly committed by contributors, but
rather are actually committed by the Commit Queue bot, which
runs various tests before committing the revision, or, more
rarely, by a completely different contributor. In this case, the
proper contributor’s name will appear in only the changelog
file, and not the SVN data. Some developers are dramatically
more likely to use the Commit Queue than others. Various
other reviews of WebKit contribution history (e.g. [10]) that
examine data from SVN (or git-svn) history rather than
from changelog files are flawed for this reason. Fortunately,
by relying on changelog files rather than SVN metadata, the
authors of [1] avoid this problem.

Unfortunately, a serious error was made in processing the
changelog data. WebKit has many different sets of changelog
files, stored in various project subdirectories (JavaScriptCore,
WebCore, WebKit, WebKit2, etc.), as well as toplevel change-
logs stored in the root directory of the project. Regrettably, the
authors of [1] were unaware of the changelogs in subdirecto-
ries and based their analysis only on the toplevel changelogs,
which contain only changes that occurred in subdirectories
that lack their own changelog files. In practice, this restricted
the scope of the analysis to a very small minority of changes,
primarily to build system files, manual tests, and the WebKit
website. That is, the reported collaboration networks do not
reflect collaboration on any actual source code files. All
source code files are contained in subdirectories with their
own changelog files, and therefore no source code files were

5Note that when a contributor switches to a new email, she is henceforth
represented by a different node in the collaboration network.

actually considered in [1]’s analysis of collaboration on source
code changes.6

We speculate that the analysis’s focus on build system files
likely exaggerates the effects of clustering in the network,
as different companies used different build systems and thus
were less likely to edit the build systems used by other
companies, and that an analysis based on the correct data
would display less of a clustering effect. Certainly, there would
be dramatically more edges in the already-dense networks,
because, as described in Section III-A, an edge exists between
two developers if there exists any one file in WebKit that both
developers have modified. Omitting all of the source code files
from the analysis therefore dramatically reduces the likelihood
of edges existing between nodes in the networks.

IV. CONCLUSION

We found that the original study was impacted by an un-
suitable definition of collaboration used to build the collabora-
tion networks, severe errors in counting contributor affiliation
(including the classification of most Google employees as
unaffiliated developers), and the omission of almost all the
required data from the analysis, including all data on modi-
fications to source code files. Nevertheless, the authors were
able to derive many accurate conclusions about the WebKit
project from their inaccurate collaboration networks. Such
conclusions were clearly the work of confirmation bias, and
illustrate the dangers of seeking to find particular meanings
or explanations through visual inspection of collaboration net-
works. Researchers must work forwards from the collaboration
networks to arrive at their conclusions, rather than backwards
by attempting to match the networks to conclusions gained
from prior ethnographic knowledge.

ACKNOWLEDGMENTS

The author owes a debt of gratitude to Jose Teixeira and
Tingting Lin of the University of Turku, Finland, the authors
of [1], for publishing methodological details, source code, and
changelog data for their study on the web [4]. Without the raw
changelog data used for their analysis, the incomplete data
collection issue would never have been discovered. Without
their source code, this critique of their work may not have
been attempted. This should be considered a testament to the
importance of open publication of relevant code and data used
in research. Many researchers today consider their source code
and raw data to be either proprietary secrets to be guarded, or
simply not important enough to merit publication. It is hoped
that, in the future, such practices will come to be universally
recognized as unethical, unscientific, and detrimental to the
advance of knowledge. Teixeira and Lin are to be commended
for their openness, which made this work possible.

6This is not strictly true. In fact, a very small number of changes to source
code files were considered in the analysis. However, this was only due to the
occasional improperly-constructed changelog entries, where changes to files
in subdirectories with their own changelogs were inappropriately recorded by
developers in the toplevel project changelog. As such events were quite rare
relative to the tremendous number of actual source code changes, this can be
safely discounted.



DRAFT

The author additionally credits Carlos Garcı́a Campos of
Igalia for compiling the WebKit contributor affiliation data
used in Table I and Table III.

REFERENCES

[1] J. Teixeira and T. Lin, “Collaboration in the open-source arena: The
webkit case,” in Proceedings of the 52nd ACM conference on Computers
and people research. ACM, 2014, pp. 121–129.

[2] C. Lord, “The case for an embeddable gecko,” http://web.archive.
org/web/20160322223357/http://chrislord.net/index.php/2016/02/24/
the-case-for-an-embeddable-gecko/, archived: 2016-02-24.

[3] A. Barth, “Blink: A rendering engine for the chromium project,”
http://web.archive.org/web/20160423072603/http://blog.chromium.
org/2013/04/blink-rendering-engine-for-chromium.html, archived:
2013-04-23.

[4] J. Teixeira, T. Lin, and M. Krész, “Webkit social network
analysis,” http://web.archive.org/web/20140226221413/http://users.utu.
fi/joante/WebKitSNA, archived: 2014-02-26.

[5] M. E. Newman, “Fast algorithm for detecting community structure in
networks,” Physical review E, vol. 69, no. 6, p. 066133, 2004.

[6] “Cyber-ethnography,” http://web.archive.org/web/20160229005748/
https://en.wikipedia.org/wiki/Cyber-ethnography, archived: 2016-02-29.

[7] L. A. N. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley, “Classes of
small-world networks,” Proceedings of the national academy of sciences,
vol. 97, no. 21, pp. 11 149–11 152, 2000.

[8] M. E. Newman, “Scientific collaboration networks. i. network construc-
tion and fundamental results,” Physical review E, vol. 64, no. 1, p.
016131, 2001.

[9] J. Teixeira, G. Robles, and J. M. González-Barahona, “Lessons learned
from applying social network analysis on an industrial free/libre/open
source software ecosystem,” Journal of Internet Services and Applica-
tions, vol. 6, no. 1, pp. 1–27, 2015.

[10] M. Olsson, “Browser engines 2015: Commit rates and active developer
counts,” http://web.archive.org/web/20160305090451/http://mo.github.
io/2015/11/04/browser-engines-active-developers-and-commit-rates.
html, archived: 2016-03-05.


